Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter)...Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.展开更多
基金Funded by National Natural Science Foundation of China(No.51305472)National Natural Science Foundation of Chongqing Science and Technology Committee(No.cstc2014jcyj A60005)Natural Science Foundation of Chongqing Education Committee(No.KJ1400312)
文摘Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.