Perfect platinum (Pt) nanocubes with high density have been synthesized by controlled reduction of hexachloroplatinic acid in the presence of H2SO4 and HCl, employing a pair of low-resistivity fastened silicon (FS...Perfect platinum (Pt) nanocubes with high density have been synthesized by controlled reduction of hexachloroplatinic acid in the presence of H2SO4 and HCl, employing a pair of low-resistivity fastened silicon (FS) wafers at room temperature. The presence of the additive charges (induced by prior etching of the silicon surface with HF to remove any SiO2 layer) between the interfaces of the FS surface results in a high charge density and facilitates fast deposition of Pt nanoparticles via electroless plating. The charge density, stirring time, and homogeneity of the aqueous solution influenced the geometrical shapes of the Pt nanoparticles. The parameters were finely tuned in order to control the nucleation and growth rates and obtain perfect Pt nanocubes. The perfect Pt nanocubes were single crystalline with exposed {100} facets. Per equivalent Pt surface areas, the perfect Pt nanocubes showed enhanced catalytic activity relative to truncated Pt nanocubes or spherical Pt nanoparticles for the electrooxidation of liquid feed fuels such as methanol and ethanol. Moreover, there a strong correlation was observed between the optical, electrical, thermal, magnetic, and catalytic properties of the perfect Pt nanocubes which should lead to a variety of technological applications of these materials.展开更多
文摘Perfect platinum (Pt) nanocubes with high density have been synthesized by controlled reduction of hexachloroplatinic acid in the presence of H2SO4 and HCl, employing a pair of low-resistivity fastened silicon (FS) wafers at room temperature. The presence of the additive charges (induced by prior etching of the silicon surface with HF to remove any SiO2 layer) between the interfaces of the FS surface results in a high charge density and facilitates fast deposition of Pt nanoparticles via electroless plating. The charge density, stirring time, and homogeneity of the aqueous solution influenced the geometrical shapes of the Pt nanoparticles. The parameters were finely tuned in order to control the nucleation and growth rates and obtain perfect Pt nanocubes. The perfect Pt nanocubes were single crystalline with exposed {100} facets. Per equivalent Pt surface areas, the perfect Pt nanocubes showed enhanced catalytic activity relative to truncated Pt nanocubes or spherical Pt nanoparticles for the electrooxidation of liquid feed fuels such as methanol and ethanol. Moreover, there a strong correlation was observed between the optical, electrical, thermal, magnetic, and catalytic properties of the perfect Pt nanocubes which should lead to a variety of technological applications of these materials.