Forest fuel investigations in central and southern Siberian taiga of Scots pine forest stands dominated by lichen and feather moss ground vegetation cover revealed that total aboveground biomass varied from 13.1 to 21...Forest fuel investigations in central and southern Siberian taiga of Scots pine forest stands dominated by lichen and feather moss ground vegetation cover revealed that total aboveground biomass varied from 13.1 to 21.0 kg/m 2.Stand biomass was higher in plots in the southern taiga,while ground fuel loads were higher in the central taiga.We developed equations for fuel biomass(both aerial and ground)that could be applicable to similar pine forest sites of Central Siberia.Fuel loading variability found among plots is related to the impact and recovery time since the last wildfi re and the mosaic distribution of living vegetation.Fuel consumption due to surface fi res of low to high-intensities ranged from 0.95 to 3.08 kg/m 2,that is,18–74%from prefi re values.The total amount of fuels available to burn in case of fi re was up to 4.5–6.5 kg/m 2.Moisture content of fuels(litter,lichen,feather moss)was related to weather conditions characterized by the Russian Fire Danger Index(PV-1)and FWI code of the Canadian Forest Fire Weather Index System.The data obtained provide a strong foundation for understanding and modeling fi re behavior,emissions,and fi re eff ects on ecosystem processes and carbon stocks and could be used to improve existing global and regional models that incorporate biomass and fuel characteristics.展开更多
The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity...The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity of the cathode on the performances of the fuel cell were investigated. The obtained results show that, with different relative humidity of the cathode at 65 ℃, dynamic loading has little effect on the performances of fuel cell and the electrochemically active surface area(ECSA). However, the fuel cell operating under dynamic load is unstable when the relative humidity is 50%, and at 50 ℃ with 100% relative humidity, applying a dynamic load has a significant influence on the fuel cell performances. Scanning electron microscopy(SEM) showed that both the upstream and middle catalyst layers of the cell were unchanged, whereas the downstream cathode catalyst layer thinned as a response to dynamic load.展开更多
Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or bet...Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or between seasons (autumn and spring migrations) is crucial to our understanding of bird migration strategies. Our aim here was to analyse whether migratory blackcaps Sylvia atrieapilla passing through northern Iberia differ in their mean fuel loads, rate of fuel accumulation and ' potential' flight ranges between migration seasons. Blackcaps were mist netted for 4 h-periods beginning at dawn from 16 September to 15 November 2003 - 2005, and from 1 March to 30 April 2004 - 2006 in a European Atlantic hedgerow at Loza, northern Iberia. Both fuel load and fuel deposition rate (this latter assessed with difference in body mass of within-season recaptured individuals) were higher in autumn than in spring. Possible hypotheses explaining these results could be seasonal-associated variations in food availability (likely lower during spring than during autumn), the fact that a fraction of the migrants captured in spring could breed close to the study area and different selective pressures for breeding and wintering展开更多
We studied moist deciduous forests of Chhattisgarh, India (1) to assess the effect of four levels of historic wildland fire frequency (high, medium, low, and no-fire) on regeneration of seedlings in fire affected ...We studied moist deciduous forests of Chhattisgarh, India (1) to assess the effect of four levels of historic wildland fire frequency (high, medium, low, and no-fire) on regeneration of seedlings in fire affected areas during pre and post-fire seasons, (2) to evaluate vegetation struc- ture and diversity by layer in the four fire frequency zones, (3) to evalu- ate the impact of fire frequency on the structure of economically impor- tant tree species of the region, and (4) to quantify fuel loads by fire fre- quency level. We classified fire-affected areas into high, medium, low, and no-fire frequency classes based on government records. Tree species were unevenly distributed across fire frequency categories. Shrub density was maximum in zones of high fire frequency and minimum in low- frequency and no-fire zones. Lower tree density after fires indicated that regeneration of seedlings was reduced by fire. The population structure in the high-frequency zone was comprised of seedlings of size class (A) and saplings of size class (B), represented by Diospyros melanoxylon, Dalbergia sissoo, Shorea robusta and Tectona grandis. Younger and older trees were more abundant for Tectona grandis and Dalbargia sis- soo after fire, whereas intermediate-aged trees were more abundant pre- fire, indicating that the latter age-class was thinned by the catastrophic effect of fire. The major contributing components of fuel load included duff litter and small woody branches and twigs on the forest floor. Total fuel load on the forest floor ranged from 2.2 to 3.38 Mg/ha. The netchange in fuel load was positive in high- and medium-frequency fire zones and negative under low- and no-fire zones. Repeated fires, how- ever, slowly reduced stand stability. An ecological approach is needed for fire management to restore the no-fire spatial and temporal structure of moist deciduous forests, their species composition and fuel loads. The management approach should incorporate participatory forest manage- ment. Use of controlled fire, fire lines and mapping of fire prone areas are fundamental principles of fire hazard reduction in these areas.展开更多
Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and ma...Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and many fires occur in the area every year.However,there are few models for estimation of carbon emissions from grassland fires.Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon.In this study,the regression equations for aboveground biomass(AGB)of grassland in growing season and MODIS NDVI(Normalized Difference Vegetation Index)were established through field experiments,then AGB during Nov.–Apr.were retrieved based on that in Oct.and decline rate,finally surface fuel load was obtained for whole year.Based on controlled combustion experiments of different grassland types in Inner Mongolia,the carbon emission rate of grassland fires for each grassland type were determined,then carbon emission was estimated using proposed method and carbon emission rate.Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000–2016 was approximately 1.1978×1012 kg.The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2,with the annual average area of 311.69 km2.The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia.The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area.The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner.The spatial characteristics of carbon emission depend on the location of grassland fire,mainly in the northeast of Inner Mongolia include Hulunbuir City,Hinggan League,Xilin Gol League and Ulanqab City.The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions.This study provides a reference for estimating carbon emissions from steppe fires.The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.展开更多
Forest fire, an important agent for change in many forest ecosystems, plays an important role in atmo- spheric chemical cycles and the carbon cycle. The primary emissions from forest fire, CO2, CO, CH4, long-chained h...Forest fire, an important agent for change in many forest ecosystems, plays an important role in atmo- spheric chemical cycles and the carbon cycle. The primary emissions from forest fire, CO2, CO, CH4, long-chained hydrocarbons and volatile organic oxides, however, have not been well quantified. Quantifying the carbonaceous gas emissions of forest fires is a critical part to better under- stand the significance of forest fire in calculating carbon balance and forecasting climate change. This study uses images from Enhanced Thematic Mapper Plus (ETM+) on the Earth-observing satellite LANDSAT-7 for the year 2005 to estimate the total gases emitted by the 2006 Kanduhe forest fire in the Daxing'an Mountains. Our results suggest that the fire emitted approximately 149,187.66 t CO2, 21,187.70 t CO, 1925.41 t CxHy, 470.76 t NO and 658.77 t SO2. In addition, the gases emitted from larch forests were significantly higher than from both broadleaf-needle leaf mixed forests and broadleaf mixed forests.展开更多
We tested the effects of different fire regimes (with different fire date and fuel load) on grass growth, tree debarking and topkill in a Guinea savanna of West Africa. Different fire intensities were simulated on two...We tested the effects of different fire regimes (with different fire date and fuel load) on grass growth, tree debarking and topkill in a Guinea savanna of West Africa. Different fire intensities were simulated on two plots of 3.72 ha each, delimited in two shrubby savanna of the Lamto reserve (C?te d’Ivoire). Two fire regimes were applied, the mid-season fire (January) and the late fire (April). Two fuel levels (single: C1 and double: C2) have been used. For each fire regime, fire intensity was determined. It increases with the fuel quantity (1259 ± 356 kW·m–1 and 3380 ± 1472 kW·m–1 respectively for C1 and C2). The regrowth speed of grasses is also dependent on the fuel quantity (grasses). It increases with it and is higher after the mid-season fire than the late fire. The average intensity of the mid-season fire (2966 ± 2233 kW·m–1) is not significantly different from that of the late fire (1673 ± 1124 kW·m–1). Damages or debarking caused by fire on adult trees were recorded and are linked to fire intensity. Those damages appear to initiate the external cavity observed on trees, known to be detrimental to tree trunk mechanical resistance. They generally affect adult trees of Crossopteryx febrifuga species which is also the most commonly hollowed species. Mid-season fire remains the recommanded fire regime because it insures a faster regrowth of grasses which leads to the maintenance of equilibrium between grasses and trees.展开更多
This study considers optimization of the fuel assembly arrangement in the initial core loading of the 200 MW nuclear heating reactor (NHR-200). The enrichment of the fuel assemblies is used as the control variable wit...This study considers optimization of the fuel assembly arrangement in the initial core loading of the 200 MW nuclear heating reactor (NHR-200). The enrichment of the fuel assemblies is used as the control variable with the objective to minimize the power peaking factor. The optimization methods are applied indirectly because it is difficult to directly relate the control variable and the object function in a single equation. Therefore, the solution uses linearized functons which are solved with linear programming. The corrected simplex method is used to solve the optimal problem. Useful engineer software has been designed and used in reactor physics design.展开更多
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to high...Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behavior in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modem residential buildings are proposed for the testing of LSF walls.展开更多
基金Cooperation and logistical support of the Russian Aerial Forest Protection Service(Avialesookhrana)and Russian Forest Service(Regional and Local Forestry Committees)is greatly appreciated.A special thanks to L.Bobkova,N.Koshurnikova,and E.Krasnoshchekova for their assistance in fuel sampling and to D.Randall for statistical analysis of tree data.
文摘Forest fuel investigations in central and southern Siberian taiga of Scots pine forest stands dominated by lichen and feather moss ground vegetation cover revealed that total aboveground biomass varied from 13.1 to 21.0 kg/m 2.Stand biomass was higher in plots in the southern taiga,while ground fuel loads were higher in the central taiga.We developed equations for fuel biomass(both aerial and ground)that could be applicable to similar pine forest sites of Central Siberia.Fuel loading variability found among plots is related to the impact and recovery time since the last wildfi re and the mosaic distribution of living vegetation.Fuel consumption due to surface fi res of low to high-intensities ranged from 0.95 to 3.08 kg/m 2,that is,18–74%from prefi re values.The total amount of fuels available to burn in case of fi re was up to 4.5–6.5 kg/m 2.Moisture content of fuels(litter,lichen,feather moss)was related to weather conditions characterized by the Russian Fire Danger Index(PV-1)and FWI code of the Canadian Forest Fire Weather Index System.The data obtained provide a strong foundation for understanding and modeling fi re behavior,emissions,and fi re eff ects on ecosystem processes and carbon stocks and could be used to improve existing global and regional models that incorporate biomass and fuel characteristics.
基金Funded by the National Natural Science Foundation of China(Nos.51476119 and 51576147)the Natural Science Foundation of Hubei Province(No.2016CFA041)the Fundamental Research Funds for the Central Universities(No.2017 IVA 031)
文摘The dynamic load characteristics of a proton exchange membrane fuel cell(PEMFC) with a dead-ended anode were studied. In a 70 h experiment, the effects of anode pressure, operating temperature, and relative humidity of the cathode on the performances of the fuel cell were investigated. The obtained results show that, with different relative humidity of the cathode at 65 ℃, dynamic loading has little effect on the performances of fuel cell and the electrochemically active surface area(ECSA). However, the fuel cell operating under dynamic load is unstable when the relative humidity is 50%, and at 50 ℃ with 100% relative humidity, applying a dynamic load has a significant influence on the fuel cell performances. Scanning electron microscopy(SEM) showed that both the upstream and middle catalyst layers of the cell were unchanged, whereas the downstream cathode catalyst layer thinned as a response to dynamic load.
基金supported by a postgraduate fellowship from the Basque Governmentsupported by project CGL2007-61395(Ministry of Education and Science,Government of Spain)
文摘Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or between seasons (autumn and spring migrations) is crucial to our understanding of bird migration strategies. Our aim here was to analyse whether migratory blackcaps Sylvia atrieapilla passing through northern Iberia differ in their mean fuel loads, rate of fuel accumulation and ' potential' flight ranges between migration seasons. Blackcaps were mist netted for 4 h-periods beginning at dawn from 16 September to 15 November 2003 - 2005, and from 1 March to 30 April 2004 - 2006 in a European Atlantic hedgerow at Loza, northern Iberia. Both fuel load and fuel deposition rate (this latter assessed with difference in body mass of within-season recaptured individuals) were higher in autumn than in spring. Possible hypotheses explaining these results could be seasonal-associated variations in food availability (likely lower during spring than during autumn), the fact that a fraction of the migrants captured in spring could breed close to the study area and different selective pressures for breeding and wintering
基金financed by NRSA,Hyderabad,Forest Department of Chhattisgarh,India
文摘We studied moist deciduous forests of Chhattisgarh, India (1) to assess the effect of four levels of historic wildland fire frequency (high, medium, low, and no-fire) on regeneration of seedlings in fire affected areas during pre and post-fire seasons, (2) to evaluate vegetation struc- ture and diversity by layer in the four fire frequency zones, (3) to evalu- ate the impact of fire frequency on the structure of economically impor- tant tree species of the region, and (4) to quantify fuel loads by fire fre- quency level. We classified fire-affected areas into high, medium, low, and no-fire frequency classes based on government records. Tree species were unevenly distributed across fire frequency categories. Shrub density was maximum in zones of high fire frequency and minimum in low- frequency and no-fire zones. Lower tree density after fires indicated that regeneration of seedlings was reduced by fire. The population structure in the high-frequency zone was comprised of seedlings of size class (A) and saplings of size class (B), represented by Diospyros melanoxylon, Dalbergia sissoo, Shorea robusta and Tectona grandis. Younger and older trees were more abundant for Tectona grandis and Dalbargia sis- soo after fire, whereas intermediate-aged trees were more abundant pre- fire, indicating that the latter age-class was thinned by the catastrophic effect of fire. The major contributing components of fuel load included duff litter and small woody branches and twigs on the forest floor. Total fuel load on the forest floor ranged from 2.2 to 3.38 Mg/ha. The netchange in fuel load was positive in high- and medium-frequency fire zones and negative under low- and no-fire zones. Repeated fires, how- ever, slowly reduced stand stability. An ecological approach is needed for fire management to restore the no-fire spatial and temporal structure of moist deciduous forests, their species composition and fuel loads. The management approach should incorporate participatory forest manage- ment. Use of controlled fire, fire lines and mapping of fire prone areas are fundamental principles of fire hazard reduction in these areas.
基金Under the auspices of National Natural Science Foundation of China (No. 4176110141771450+2 种基金41871330)National Natural Science Foundation of Inner Mongolia (No. 2017MS0409)Fundamental Research Funds for the Central Universities (No. 2412019BJ001)
文摘Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and many fires occur in the area every year.However,there are few models for estimation of carbon emissions from grassland fires.Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon.In this study,the regression equations for aboveground biomass(AGB)of grassland in growing season and MODIS NDVI(Normalized Difference Vegetation Index)were established through field experiments,then AGB during Nov.–Apr.were retrieved based on that in Oct.and decline rate,finally surface fuel load was obtained for whole year.Based on controlled combustion experiments of different grassland types in Inner Mongolia,the carbon emission rate of grassland fires for each grassland type were determined,then carbon emission was estimated using proposed method and carbon emission rate.Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000–2016 was approximately 1.1978×1012 kg.The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2,with the annual average area of 311.69 km2.The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia.The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area.The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner.The spatial characteristics of carbon emission depend on the location of grassland fire,mainly in the northeast of Inner Mongolia include Hulunbuir City,Hinggan League,Xilin Gol League and Ulanqab City.The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions.This study provides a reference for estimating carbon emissions from steppe fires.The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.
基金supported by Fundamental Research Funds for Central Universities(No.DL13BA02)National Natural Science Foundation of China(Grant No.31400552)+1 种基金the Twelfth5-Year National Science and Technology Project In Rural Areas(No.2011BAD37B0104)the Forestry Industry Research Special Funds For Public Welfare Project(No.201004003-6)
文摘Forest fire, an important agent for change in many forest ecosystems, plays an important role in atmo- spheric chemical cycles and the carbon cycle. The primary emissions from forest fire, CO2, CO, CH4, long-chained hydrocarbons and volatile organic oxides, however, have not been well quantified. Quantifying the carbonaceous gas emissions of forest fires is a critical part to better under- stand the significance of forest fire in calculating carbon balance and forecasting climate change. This study uses images from Enhanced Thematic Mapper Plus (ETM+) on the Earth-observing satellite LANDSAT-7 for the year 2005 to estimate the total gases emitted by the 2006 Kanduhe forest fire in the Daxing'an Mountains. Our results suggest that the fire emitted approximately 149,187.66 t CO2, 21,187.70 t CO, 1925.41 t CxHy, 470.76 t NO and 658.77 t SO2. In addition, the gases emitted from larch forests were significantly higher than from both broadleaf-needle leaf mixed forests and broadleaf mixed forests.
基金conducted as part of the RIPIECSA-project in Cote d’Ivoire.
文摘We tested the effects of different fire regimes (with different fire date and fuel load) on grass growth, tree debarking and topkill in a Guinea savanna of West Africa. Different fire intensities were simulated on two plots of 3.72 ha each, delimited in two shrubby savanna of the Lamto reserve (C?te d’Ivoire). Two fire regimes were applied, the mid-season fire (January) and the late fire (April). Two fuel levels (single: C1 and double: C2) have been used. For each fire regime, fire intensity was determined. It increases with the fuel quantity (1259 ± 356 kW·m–1 and 3380 ± 1472 kW·m–1 respectively for C1 and C2). The regrowth speed of grasses is also dependent on the fuel quantity (grasses). It increases with it and is higher after the mid-season fire than the late fire. The average intensity of the mid-season fire (2966 ± 2233 kW·m–1) is not significantly different from that of the late fire (1673 ± 1124 kW·m–1). Damages or debarking caused by fire on adult trees were recorded and are linked to fire intensity. Those damages appear to initiate the external cavity observed on trees, known to be detrimental to tree trunk mechanical resistance. They generally affect adult trees of Crossopteryx febrifuga species which is also the most commonly hollowed species. Mid-season fire remains the recommanded fire regime because it insures a faster regrowth of grasses which leads to the maintenance of equilibrium between grasses and trees.
文摘This study considers optimization of the fuel assembly arrangement in the initial core loading of the 200 MW nuclear heating reactor (NHR-200). The enrichment of the fuel assemblies is used as the control variable with the objective to minimize the power peaking factor. The optimization methods are applied indirectly because it is difficult to directly relate the control variable and the object function in a single equation. Therefore, the solution uses linearized functons which are solved with linear programming. The corrected simplex method is used to solve the optimal problem. Useful engineer software has been designed and used in reactor physics design.
文摘Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behavior in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modem residential buildings are proposed for the testing of LSF walls.