The working mechanism of MFC used for simultaneous nitrogen removal and electricity generation was studied.The results show that the electrode biofilms and suspension had different modes of electron transfer.The micro...The working mechanism of MFC used for simultaneous nitrogen removal and electricity generation was studied.The results show that the electrode biofilms and suspension had different modes of electron transfer.The microorganisms growing on the electrodes and bioflocs could transfer electrons by direct contact and intermediaries respectively.The electrode biofilms and bioflocs were dominant in different functional spaces,and played a synergistic role in the process of contaminant removal,but showed a certain competitive relationship in the process of electricity generation.This study can provide a theoretical basis for the development of a new low-consumption wastewater treatment technology and promote technological innovation in wastewater treatment.展开更多
Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without...Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co-or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li-S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction(oxygen reduction and evolution reactions, hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer.展开更多
In this study, hydrothermal carbonization(HTC)was applied for surface functionalization of carbon nanotubes(CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carb...In this study, hydrothermal carbonization(HTC)was applied for surface functionalization of carbon nanotubes(CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carbon layers on the surface of the CNTs. By controlling the ratio of glucose to urea, nitrogen contents of up to 1.7 wt%were achieved. The nitrogen-doped carbon nanotube-supported Pd catalysts exhibited superior electrochemical activity for ethanol oxidation relative to the pristine CNTs.Importantly, a 1.5-fold increase in the specific activity was observed for the Pd/HTC-N1.67%CNTs relative to the catalyst without nitrogen doping(Pd/HTC-CNTs). Furtherexperiments indicated that the introduction of nitrogen species on the surface of the CNTs improved the Pd(0)loading and increased the binding energy.展开更多
基金Supported by Natural Science Foundation of Shandong Province,China(ZR2019QEE039)Natural Science Foundation of Zhejiang Province,China(LY18E080007)National Natural Science Foundation of China(51808494)
文摘The working mechanism of MFC used for simultaneous nitrogen removal and electricity generation was studied.The results show that the electrode biofilms and suspension had different modes of electron transfer.The microorganisms growing on the electrodes and bioflocs could transfer electrons by direct contact and intermediaries respectively.The electrode biofilms and bioflocs were dominant in different functional spaces,and played a synergistic role in the process of contaminant removal,but showed a certain competitive relationship in the process of electricity generation.This study can provide a theoretical basis for the development of a new low-consumption wastewater treatment technology and promote technological innovation in wastewater treatment.
基金the support from the USDA National Institute of Food and Agriculture, HSI Collaboration:Integrating Food Science/Engineering and Education Network(IFSEEN,award number: 2015-3842224059)the support from the NMSU Agricultural Experiment Station Graduate Research Award
文摘Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co-or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li-S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction(oxygen reduction and evolution reactions, hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer.
基金financial support of the National Natural Science Foundation of China(Nos.51672045 and 11374053)Key Program of Universityindustry Collaboration from Science and Technology Department of Fujian Province(No.2015H6009)
文摘In this study, hydrothermal carbonization(HTC)was applied for surface functionalization of carbon nanotubes(CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carbon layers on the surface of the CNTs. By controlling the ratio of glucose to urea, nitrogen contents of up to 1.7 wt%were achieved. The nitrogen-doped carbon nanotube-supported Pd catalysts exhibited superior electrochemical activity for ethanol oxidation relative to the pristine CNTs.Importantly, a 1.5-fold increase in the specific activity was observed for the Pd/HTC-N1.67%CNTs relative to the catalyst without nitrogen doping(Pd/HTC-CNTs). Furtherexperiments indicated that the introduction of nitrogen species on the surface of the CNTs improved the Pd(0)loading and increased the binding energy.