Fishing is a major local industry in Malaysia, particularly in rural areas. However, the rapidly increasing price of fuel is seriously affecting the industry's viability. At present, outboard petrol engines are the p...Fishing is a major local industry in Malaysia, particularly in rural areas. However, the rapidly increasing price of fuel is seriously affecting the industry's viability. At present, outboard petrol engines are the preferred choice for use in small-scale fishing boats because they deliver the advantages of high speed and low weight, they are easy to install, and they use minimal space. Petrol outboard engines are known to consume a greater amount of fuel than inboard diesel engines, but installing diesel engines with conventional submerged propellers in existing small-scale fishing boats is not economically viable because major hullform modifications and extra expenditure are required to achieve this. This study describes a proposal to enable reductions in fuel consumption by introducing the combined use of a diesel engine and Surface-Piercing Propeller (SPP). An analysis of fuel consumption reduction is presented, together with an economic feasibility study. Resulting data reveal that the use of the proposed modifications would save 23.31 liters of fuel per trip (40.75%) compared to outboard motors, equaling annual savings of RM 3962 per year.展开更多
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ...The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.展开更多
A new method using Ozone to improve fuel combustion resulting in fuel saving and pollution reduction for diesel engine has been put forward in this paper. The method features non destructive fuel saving and anti-knoc...A new method using Ozone to improve fuel combustion resulting in fuel saving and pollution reduction for diesel engine has been put forward in this paper. The method features non destructive fuel saving and anti-knock nature improvement. The experiment shows that, compared with those of the original engine, the fuel saving rate is up to 1.7%-3.3%, and the exhaust pollution reduction rate is 3.0%-6.8, thus may lead to a good comprehensive benefit in economic, social and ecological aspects.展开更多
This paper analyses the issue of accelerated start-up of a marine steam turbine,which is an important problem because the start-up of a steam machine involves the combustion of fuel that is not transformed into useful...This paper analyses the issue of accelerated start-up of a marine steam turbine,which is an important problem because the start-up of a steam machine involves the combustion of fuel that is not transformed into useful energy.To find novel technologies that offer improvements in this aspect is essential due to restrictions on reducing ship emissions.Thus,the shorter the start-up time,the better for the environment and economy.High-pressure(HP)part of the turbine originally located on the Queen Elizabeth II unit was analysed.Advanced numerical calculations by thermal fluid-solid-interaction(Thermal FSI)were carried out.A series of simulations were performed for the accelerated start-up with controlled steam injection.A description of the chosen calculation methodology and the results obtained by simulation are included in this paper.The stress occurring during the accelerated start-up are approximately 40 MPa higher than those during the reference start-up.The relative elongations between the rotor and the hull during accelerated start-up reach a maximum value of 0.89 mm(0.83 mm for ultra-fast start-up).Reducing the steam turbine start-up time by 75%results in a 36.7 tons reduction in fuel consumption for start-up,resulting in an annual savings of 5372 USD.In conclusion,the concept proposed by the authors is safe,less expensive and does not affect the life of the turbine.In addition,results and applications from Siemens prove that additional injection of cooling steam is possible.展开更多
48 V lithium battery micro hybrid system is the most fuel economy vehicle which can be mass produced at present.However,with the irreversible internal resistance increase of the key component 48 V lithium battery,and ...48 V lithium battery micro hybrid system is the most fuel economy vehicle which can be mass produced at present.However,with the irreversible internal resistance increase of the key component 48 V lithium battery,and the capacity continues to decline,the system performance deteriorate.Worst case could be the system not functional in the middle and later age of vehicle life cycle.This paper studies the feasibility of using 48 V super capacitor as the replacement to 48 V lithium battery,and uses a 12 V module of 48 V super capacitor as the traditional 12 V power supply,further reducing the number of components or reducing the demand for parts of 48 V micro hybrid system.This paper analyses the 48 V super capacitor micro hybrid system scheme,based on which a prototype is built,and carries out the vehicle comparative test.The results show that:(1)The performance of 48 V super capacitor micro hybrid system perform comparably with 48 V lithium battery micro hybrid system,and 12 V multiplexing function does not cause power loss of super capacitor;(2)The SOC fluctuation of super capacitor is larger than that of lithium battery,but it can satisfy all test conditions through the strategy;(3)The voltage mutation of super capacitor is smaller than that of lithium battery.It can greatly reduce the impact of voltage on vehicle electrical appliances.The 48 V super capacitor micro hybrid system with 12 V multiplexing function is of great significance.展开更多
The shift indicator is developed according to the shift regularity of auto, which provides the messages of the reasonable shift position, the shift time and the optimal velocity of auto. It developed the drive techniq...The shift indicator is developed according to the shift regularity of auto, which provides the messages of the reasonable shift position, the shift time and the optimal velocity of auto. It developed the drive technique obviously, and can save the fuel about 10 percent.展开更多
Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requ...Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requires compliance with EEDI (energy efficiency design index) measures. For the container shipping industry this represents significant increases in fuel costs that can be mitigated above all by reduction of power demand, that is, of ship frictional resistance. In this respect, this paper discusses advantages attainable by application of the ACS (air cavity system) technology on the basis of recent KSRC (Krylov State Research Centre) studies Savings in operating costs yielded by the enhanced propulsion performance for ships fitted with this system are illustrated by a case study of a containership.展开更多
The main hindrances to the large-scale development of renewable-energy projects are the lack of bankability and the inability to align investments and investors with suitable financial instruments or robust policy mea...The main hindrances to the large-scale development of renewable-energy projects are the lack of bankability and the inability to align investments and investors with suitable financial instruments or robust policy measures.To illustrate a bankable project,this paper presents a research-based case study on the installation of solar photovoltaic panels on the rooftops of 195 trains of the Indian Railways.Detailed information on the annual running hours,exposure to sunlight,efficiency of solar photovoltaic generation and electrical power demands of each rail coach is considered to conduct a quantitative measure of the tentative amount of fossil fuel sav-ings.The purpose is to provide insight into the types of renewable-energy projects that can be highly attractive to financial institutions and promoters due to their lucrative internal return on investment.As seen in this case study,there are annual savings in diesel of 12323088 litres and a CO_(2) reduction of 32755 tonnes,with return on investment of 1.3 years.Furthermore,this study conducts a com-prehensive analysis of the limitations of existing renewable-energy project financing mechanisms in India.Subsequently,three policy measures are recommended to develop a robust financial mechanism that can effectively meet the needs of investors and investors.These measures include increasing equity injection through a buy-and-hold strategy,providing direct tax benefits to promoters and financing through real-estate investment trusts.The findings are highly relevant to address the challenges associated with bridging the financial gap between access to finance and capital investment in the renewable-energy sector,especially for Asian countries.展开更多
文摘Fishing is a major local industry in Malaysia, particularly in rural areas. However, the rapidly increasing price of fuel is seriously affecting the industry's viability. At present, outboard petrol engines are the preferred choice for use in small-scale fishing boats because they deliver the advantages of high speed and low weight, they are easy to install, and they use minimal space. Petrol outboard engines are known to consume a greater amount of fuel than inboard diesel engines, but installing diesel engines with conventional submerged propellers in existing small-scale fishing boats is not economically viable because major hullform modifications and extra expenditure are required to achieve this. This study describes a proposal to enable reductions in fuel consumption by introducing the combined use of a diesel engine and Surface-Piercing Propeller (SPP). An analysis of fuel consumption reduction is presented, together with an economic feasibility study. Resulting data reveal that the use of the proposed modifications would save 23.31 liters of fuel per trip (40.75%) compared to outboard motors, equaling annual savings of RM 3962 per year.
基金This study was financially supported by the National Natural Science Foundation of China(52072156)the Postdoctoral Foundation of China(2020M682269).
文摘The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.
文摘A new method using Ozone to improve fuel combustion resulting in fuel saving and pollution reduction for diesel engine has been put forward in this paper. The method features non destructive fuel saving and anti-knock nature improvement. The experiment shows that, compared with those of the original engine, the fuel saving rate is up to 1.7%-3.3%, and the exhaust pollution reduction rate is 3.0%-6.8, thus may lead to a good comprehensive benefit in economic, social and ecological aspects.
文摘This paper analyses the issue of accelerated start-up of a marine steam turbine,which is an important problem because the start-up of a steam machine involves the combustion of fuel that is not transformed into useful energy.To find novel technologies that offer improvements in this aspect is essential due to restrictions on reducing ship emissions.Thus,the shorter the start-up time,the better for the environment and economy.High-pressure(HP)part of the turbine originally located on the Queen Elizabeth II unit was analysed.Advanced numerical calculations by thermal fluid-solid-interaction(Thermal FSI)were carried out.A series of simulations were performed for the accelerated start-up with controlled steam injection.A description of the chosen calculation methodology and the results obtained by simulation are included in this paper.The stress occurring during the accelerated start-up are approximately 40 MPa higher than those during the reference start-up.The relative elongations between the rotor and the hull during accelerated start-up reach a maximum value of 0.89 mm(0.83 mm for ultra-fast start-up).Reducing the steam turbine start-up time by 75%results in a 36.7 tons reduction in fuel consumption for start-up,resulting in an annual savings of 5372 USD.In conclusion,the concept proposed by the authors is safe,less expensive and does not affect the life of the turbine.In addition,results and applications from Siemens prove that additional injection of cooling steam is possible.
基金The National Key Research and Development Program for New Energy Vehicles in 2018“Power System Platform and Vehicle Integration Technology for Extended-Range Fuel Cell Cars”(2018YFB0105400)。
文摘48 V lithium battery micro hybrid system is the most fuel economy vehicle which can be mass produced at present.However,with the irreversible internal resistance increase of the key component 48 V lithium battery,and the capacity continues to decline,the system performance deteriorate.Worst case could be the system not functional in the middle and later age of vehicle life cycle.This paper studies the feasibility of using 48 V super capacitor as the replacement to 48 V lithium battery,and uses a 12 V module of 48 V super capacitor as the traditional 12 V power supply,further reducing the number of components or reducing the demand for parts of 48 V micro hybrid system.This paper analyses the 48 V super capacitor micro hybrid system scheme,based on which a prototype is built,and carries out the vehicle comparative test.The results show that:(1)The performance of 48 V super capacitor micro hybrid system perform comparably with 48 V lithium battery micro hybrid system,and 12 V multiplexing function does not cause power loss of super capacitor;(2)The SOC fluctuation of super capacitor is larger than that of lithium battery,but it can satisfy all test conditions through the strategy;(3)The voltage mutation of super capacitor is smaller than that of lithium battery.It can greatly reduce the impact of voltage on vehicle electrical appliances.The 48 V super capacitor micro hybrid system with 12 V multiplexing function is of great significance.
文摘The shift indicator is developed according to the shift regularity of auto, which provides the messages of the reasonable shift position, the shift time and the optimal velocity of auto. It developed the drive technique obviously, and can save the fuel about 10 percent.
文摘Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requires compliance with EEDI (energy efficiency design index) measures. For the container shipping industry this represents significant increases in fuel costs that can be mitigated above all by reduction of power demand, that is, of ship frictional resistance. In this respect, this paper discusses advantages attainable by application of the ACS (air cavity system) technology on the basis of recent KSRC (Krylov State Research Centre) studies Savings in operating costs yielded by the enhanced propulsion performance for ships fitted with this system are illustrated by a case study of a containership.
文摘The main hindrances to the large-scale development of renewable-energy projects are the lack of bankability and the inability to align investments and investors with suitable financial instruments or robust policy measures.To illustrate a bankable project,this paper presents a research-based case study on the installation of solar photovoltaic panels on the rooftops of 195 trains of the Indian Railways.Detailed information on the annual running hours,exposure to sunlight,efficiency of solar photovoltaic generation and electrical power demands of each rail coach is considered to conduct a quantitative measure of the tentative amount of fossil fuel sav-ings.The purpose is to provide insight into the types of renewable-energy projects that can be highly attractive to financial institutions and promoters due to their lucrative internal return on investment.As seen in this case study,there are annual savings in diesel of 12323088 litres and a CO_(2) reduction of 32755 tonnes,with return on investment of 1.3 years.Furthermore,this study conducts a com-prehensive analysis of the limitations of existing renewable-energy project financing mechanisms in India.Subsequently,three policy measures are recommended to develop a robust financial mechanism that can effectively meet the needs of investors and investors.These measures include increasing equity injection through a buy-and-hold strategy,providing direct tax benefits to promoters and financing through real-estate investment trusts.The findings are highly relevant to address the challenges associated with bridging the financial gap between access to finance and capital investment in the renewable-energy sector,especially for Asian countries.