期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Enhanced ethanol electro-oxidation on CeO_2-modified Pt/Ni catalysts in alkaline solution 被引量:3
1
作者 徐志花 饶丽霞 +3 位作者 宋海燕 严朝雄 张利君 杨水彬 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期305-312,共8页
Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts ... Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts showed enhanced catalytic performance for ethanol electro-oxidation compared with pure Pt/Ni,and acetate species were proposed to be the main products of the oxidation when using these catalysts.The content of CeO2 in the as-prepared catalysts influenced their catalytic activity,with Pt/NiCe2(obtained from an electrolyte containing 100 mg/L CeO2 nanoparticles) exhibiting higher activity and relatively better stability in ethanol electro-oxidation.This was mainly due to the oxygen storage capacity of CeO2,the interaction between Pt and CeO2/Ni,and the relatively small contact and charge transfer resistances.The results of this work thus suggest that electrocatalysts with low price and high activity can be rationally designed and produced by a simple route for use in direct ethanol fuel cells. 展开更多
关键词 Direct ethanol fuel cell ethanol oxidation CeO2 nanoparticle Composite electrodeposition ELECTROCATALYST
下载PDF
Preparation and characterization of Pt-WO_3/C catalysts for direct ethanol fuel cells 被引量:1
2
作者 WU Feng LIU Yanhong WU Chuan 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期255-260,共6页
Three co-impregnation/chemical reduction methods in acidic solutions of pH 〈 1,including ethylene glycol (EG),NaBH4,and HCOOH,were compared for Pt-WO3/C catalysts.Pt-WO3/C catalysts containing 10 wt.% and 20 wt.% p... Three co-impregnation/chemical reduction methods in acidic solutions of pH 〈 1,including ethylene glycol (EG),NaBH4,and HCOOH,were compared for Pt-WO3/C catalysts.Pt-WO3/C catalysts containing 10 wt.% and 20 wt.% platinum per carbon were prepared by the three methods; their morphology and electrocatalytic activities were characterized.The 20 wt.% Pt-WO3/C catalyst prepared by the co-impregnation/EG method presented the optimal dispersion with an average particle size of 4.6 nm and subsequently the best electrocatalytic activity,and so,it was further characterized.Its anodic peak current density for ethanol oxidation from linear sweep voltammetry (LSV) is 7.9 mA·cm^-2,which is 1.4 and 5.2 times as high as those of the catalysts prepared by co-impregnation/NaBH4 and co-impregnation/ HCOOH reduction methods,2.1 times as high as that of the 10 wt.% Pt-WO3/C catalyst prepared by co-impregnation/EG method,respectively. 展开更多
关键词 direct ethanol fuel cells CATALYSTS preparation method CHARACTERIZATION ethanol electrooxidation
下载PDF
Synthesis and characterization of Pt-MoO_x-TiO_2 electrodes for direct ethanol fuel cells 被引量:1
3
作者 Xiu-yu Wang Jing-chang Zhang +2 位作者 Xu-dong Cao Yuan-sheng Jiang Hong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第5期594-599,共6页
To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells,carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the prepa... To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells,carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method.The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD),transmission electron microscopy (TEM),X-ray photoelectron spectroscopy (XPS),and infrared spectroscopy of adsorbed probe ammonia molecules.The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique.The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes.It is explained that,the structure,the oxidation states,and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoOx to the Pt-based catalysts. 展开更多
关键词 direct ethanol fuel cell ACIDITY metal oxides ELECTROCATALYSTS methanol oxidation electrochemical properties carbon naotubes
下载PDF
The Control of Lactobacillus sp.by Extracellular Compound Produced by Pseudomonas aeruginosa in the Fermentation Process of Fuel Ethanol Industry in Brazil 被引量:1
4
作者 Cintia Greice Matsuoca Gois Lucilene Lopes-Santos +3 位作者 Jamile Priscila de Oliveira Beranger Admilton Goncalves de Oliveira Flavia Regina Spago Galdino Andrade 《Journal of Sustainable Bioenergy Systems》 2013年第3期194-201,共8页
This work evaluated the effect of secondary bacterial metabolites produced by Pseudomonas sp LV strain in control of Lactobacillus sp. population in the microcosm of the vat during ethanol fermentation. The fraction F... This work evaluated the effect of secondary bacterial metabolites produced by Pseudomonas sp LV strain in control of Lactobacillus sp. population in the microcosm of the vat during ethanol fermentation. The fraction F4 produced by Pseudomonas aeruginosa was extracted with dichloromethane and fractionating by vacuum liquid chromatography obtained in a methanol phase. The evaluation of antibiotic activity of F4 fraction mixed or not with sulphuric acid and Kamoram?. The antibiotic activity of F4 fraction was determined as well as the fermentation efficiency. Also was determined yeast cell viability, budding formation, the viability of budding cells, and number of populations of Saccharomyces cerevisiae and Lactobacillus sp. The results showed that the F4 fraction had high selective antibiotic activity against Lactobacillus sp. but not for S. cerevisae, and no inhibitory effect was observed in the fermentation process by yeast. Also F4 fraction decreased flocculation and foam formation. The F4 has an antibiotic activity against Lactobacillus sp. and should be used as an alternative to control bacteria contamination and foam and flocculation formation in the fuel ethanol fermentation process. The F4 fraction could reduce the use of antibiotics in the control of Lactobacillus sp. population during the fuel ethanol production. 展开更多
关键词 Fuel ethanol Fermentation Contamination LACTOBACILLUS YEAST PSEUDOMONAS
下载PDF
Sorghum as Dry Land Feedstock for Fuel Ethanol Production
5
作者 WANG Donghai WU Xiaorong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第4期83-96,共14页
Dry land crops such as sorghums (grain sorghum, promising feedstocks for fuel ethanol production. The major issue sweet sorghum and forage sorghum) have been identified as for using the sweet sorghum as feedstock is... Dry land crops such as sorghums (grain sorghum, promising feedstocks for fuel ethanol production. The major issue sweet sorghum and forage sorghum) have been identified as for using the sweet sorghum as feedstock is its stability at room temperature. At room temperature, the sweet sorghum juice could lose from 40% to 50% of its fermentable sugars from 7 to 14 days No significant sugar content and profile changes were observed in juice stored at refrigerator temperature in two weeks. Ethanol fermentation efficiencies of fresh and frozen juice were high (-93%). Concentrated juice (≥25% sugar) had significantly lower efficiencies and large amounts of fructose left in finished beer; however, winery yeast strains and novel fermentation techniques may solve these problems. The ethanol yield from sorghum grain increased as starch content increased. No linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include starches and protein digestibility, amylose-lipid complexes, tannin content, and mash viscosity. Life cycle analysis showed a positive net energy value (NEV) = 25 500 Btu/gal ethanol. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were used to determine changes in the structure and chemical composition of sorghum biomasses. Dilute sulfuric acid pretreatment was effective in removing the hemicellulose from biomasses and exposing the cellulose for enzymatic hydrolysis. Forage sorghum lignin had a lower syringyl/guaiacyl ratio and its pretreated biomass was easier to hydrolyze. Up to 72% hexose yield and 94% pentose yield were obtained by using a modified steam explosion with 2% sulfuric acid at 140℃ for 30 min and enzymatic hydrolysis with cellulase. 展开更多
关键词 dilute acid pretreatment dry land feedstock FTIR fuel ethanol SORGHUM XRD
下载PDF
Allocation of Energy Use in the Biomass-based Fuel Ethanol System and Its Use in Decision Making
6
作者 冷如波 于随然 +2 位作者 方芳 戴杜 王成焘 《Journal of Donghua University(English Edition)》 EI CAS 2005年第5期5-8,共4页
The Chinese government is developing biomass ethanol as one of its automobile fuels for energy security and environmental improvement reasons. The energy efficiency of the biomass-based fuel ethanol is critical issue.... The Chinese government is developing biomass ethanol as one of its automobile fuels for energy security and environmental improvement reasons. The energy efficiency of the biomass-based fuel ethanol is critical issue. To investigate the energy use in the three biomass-base ethanol fuel systems, energy content approach, Market value approach and Product displacement approach methods were used to allocate the energy use based on life cycle energy assessment. The results shows that the net energy of corn based, wheat based, and cassava-based ethanol fuel are 12543MJ, 10299MJ and 13112MJ when get one ton biomassbased ethanol, respectively, and they do produce positive net energy. 展开更多
关键词 ALLOCATION energy use biornass fuel ethanol
下载PDF
Simulation of the Strip-Flash Ethanol Continuous Fermentation Process
7
作者 Z. Liu J.J. Hao A.W. Zeng 《Journal of Energy and Power Engineering》 2010年第9期26-31,共6页
The conventional ethanol fermentaion is a typical inhibitory process, leading to low productivity and yield. A new ethanol fermentation process coupled with gas stripping and vacuum fash, named as strip-flash fermenta... The conventional ethanol fermentaion is a typical inhibitory process, leading to low productivity and yield. A new ethanol fermentation process coupled with gas stripping and vacuum fash, named as strip-flash fermentation, is proposed. The process is provided with the advantages of both stripping fermentation and flash fermentation, and improves the ethanol productivity by increasing the in-situ ethanol removal. And a model of flash-strip fermentation process was established, the results from the model were consistent with the experiment values. The theoretically analyses indicate that increasing gas flux and liquid phase recycling ratio can help to enhance productivity and yield of strip-flash fermentation process, and comparison to striping fermentation or flash fermentation, flash-strip fermentation has shown a better productivity. The results has also shown the possibilities of further application and optimization of this process. 展开更多
关键词 Fuel ethanol FERMENTATION strip-flash SIMULATION
下载PDF
Hainan to invest 350 million Yuan in fuel ethanol projects
8
《Electricity》 2008年第3期17-17,共1页
Hainan Yedao (Group) Co. Ltd. plans to invest 350 million Yuan in construction of a fuel ethanol project. With cooperation of a large state-owned petrochemical enter- prise, this project is planned to produce 100 thou... Hainan Yedao (Group) Co. Ltd. plans to invest 350 million Yuan in construction of a fuel ethanol project. With cooperation of a large state-owned petrochemical enter- prise, this project is planned to produce 100 thousand 展开更多
关键词 Hainan to invest 350 million Yuan in fuel ethanol projects
下载PDF
Functionalised Poly(Vinyl Alcohol)/Graphene Oxide as Polymer Composite Electrolyte Membranes 被引量:1
9
作者 O.Gil-Castell R.Cerveró +2 位作者 R.Teruel-Juanes J.D.Badia A.Ribes-Greus 《Journal of Renewable Materials》 SCIE 2019年第7期655-665,共11页
Crosslinked poly(vinyl alcohol)(PVA)based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells(DEFC).The membranes were functionalised by means of the addition of gr... Crosslinked poly(vinyl alcohol)(PVA)based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells(DEFC).The membranes were functionalised by means of the addition of graphene oxide(GO)and sulfonated graphene oxide(SGO)and crosslinked with sulfosuccinic acid(SSA).The chemical structure was corroborated and suitable thermal properties were found.Although the addition of GO and SGO slightly decreased the proton conductivity of the membranes,a significant reduction of the ethanol solution swelling and crossover was encountered,more relevant for those functionalised with SGO.In general,the composite membranes were stable under simulated service conditions.The addition of GO and SGO particles permitted to buffer the loss and almost retain similar proton conductivity than prior to immersion.These membranes are alternative polyelectrolytes,which overcome current concerns of actual commercial membranes such as the high cost or the crossover phenomenon. 展开更多
关键词 Direct ethanol fuel cell graphene oxide poly(vinyl alcohol) proton exchange membranes proton conductivity
下载PDF
Synthesis of palladium-rare earth alloy as a high-performance bifunctional catalyst for direct ethanol fuel cells
10
作者 Qingqing Li Chang Sun +4 位作者 Xiaolei Sun Zijun Yin Yaping Du Jin-Cheng Liu Feng Luo 《Nano Research》 SCIE EI CSCD 2024年第11期9525-9531,共7页
Direct ethanol fuel cells (DEFCs) have drawn attention for their simplicity, rapid start-up, high power density and environmental friendliness. Despite these advantages, the widespread application of DEFCs faces chall... Direct ethanol fuel cells (DEFCs) have drawn attention for their simplicity, rapid start-up, high power density and environmental friendliness. Despite these advantages, the widespread application of DEFCs faces challenges, primarily due to the inadequate performance of anode and cathode catalysts. Pd-based materials have shown exceptional catalytic activity for both the ethanol oxidation reaction (EOR) and the oxygen reduction reaction (ORR). Alloying noble metals with rare earth elements has emerged as an effective strategy to further enhance the catalytic activity by modulating the electronic structure. In this study, we synthesized a series of palladium-rare earth (Pd3RE) alloys supported on carbon to serve as bifunctional catalysts that efficiently promote both ORR and EOR. Compared to Pd/C, the Pd3Tb/C catalyst exhibits 3.1-fold and 1.8-fold enhancement in activity for ORR and EOR, respectively. The charge transfer in the Pd3Tb/C results in an electron-rich Pd component, thereby weakening the binding energy with oxygen species and facilitating the two reactions. 展开更多
关键词 rare earth alloy oxygen reduction reaction ethanol oxidation reaction direct ethanol fuel cells bifunctional electrocatalyst charge transfer
原文传递
Carbon Balance of Cassava-based Ethanol Fuel in China 被引量:1
11
作者 杨海龙 吕耀 封志明 《Journal of Resources and Ecology》 CSCD 2012年第1期55-63,共9页
Considering energy security and greenhouse gas emission, many governments are developing bio-liquid fuel industries. The Chinese Government advocates the development of a fuel ethanol industry with non-food crops such... Considering energy security and greenhouse gas emission, many governments are developing bio-liquid fuel industries. The Chinese Government advocates the development of a fuel ethanol industry with non-food crops such as cassava. However, scientists debate the carbon emission of these bio-liquid fuels. The focuses are the influence of soil carbon pool destruction and by-product utilization. This study built a carbon balance analysis model, and assessed carbon emission of cassava fuel ethanol across its life cycle. The results show that the carbon emission of cassava fuel ethanol per kilogram in its life cycle was 0.457 kg under new technical conditions and 0.647 kg under old technical conditions. Carbon emission mainly came from the use of nitrogen fertilizer (9% of total emissions), the destruction of the soil carbon pool (29%) and fossil energy inputs (50%). Taking gasoline as a reference, the carbon emission of cassava fuel ethanol was 90% of that of gasoline. This percentage would drop to 64% if soil carbon pool destruction was avoided. Therefore, in order to promote the development of cassava fuel ethanol in China, farms should apply fertilizer properly, grow cassava on marginal land, and not alter land use patterns of woodland, grassland and other environments. In addition, we should exploit efficient fuel ethanol conversion technologies and strengthen the use of by-products. 展开更多
关键词 fuel ethanol life cycle assessment (LCA) carbon impact carbon balance analysis CASSAVA
原文传递
Surface composition-tunable octahedral PtCu nanoalloys advance the electrocatalytic performance on methanol and ethanol oxidation 被引量:7
12
作者 Fengling Zhao Qiang Yuan +4 位作者 Bin Luo Chaozhong Li Fang Yang Xiaotong Yang Zhiyou Zhou 《Science China Materials》 SCIE EI CSCD 2019年第12期1877-1887,共11页
The synthesis of surface composition-tunable Pt-based octahedral nanoalloys is key to unravel the structureproperty relationship in fuel cells. Herein, we report a facile route to prepare composition-tunable Pt Cu oct... The synthesis of surface composition-tunable Pt-based octahedral nanoalloys is key to unravel the structureproperty relationship in fuel cells. Herein, we report a facile route to prepare composition-tunable Pt Cu octahedral nanoalloys by using halogen ions(Br-or/and I-) as composition modulators. Among these Pt Cu octahedral nanoalloys,Pt59 Cu41 octahedron exhibits the highest catalytic activity and durability in alkaline solution. The specific activity/mass activity of Pt59 Cu41 octahedron is 20.25 m A cm^-2/3.24 A mg^-1 Pt,which is 6.64/5.3 times higher than commercial Pt black in 0.5 mol L^-1 CH3 OH, respectively. In the case of using ethanol(0.5 mol L^-1) as fuel source, Pt59 Cu41 octahedron shows much better catalytic activity, that is 34.84 m A cm^-2/5.58 A mg^-1 Pt for specific activity/mass activity, which is 9.16/7.34 times higher than commercial Pt black, respectively. In situ Fourier transform infrared spectroscopy is employed to detect the intermediate species and products for methanol/ethanol oxidation reaction and a plausible mechanism is proposed to explain the improved activity and durability of Pt59 Cu41 octahedron toward methanol/ethanol oxidation in alkaline medium. 展开更多
关键词 octahedral PtCu alloy composition and strain-tunable in situ FTIR direct methanol/ethanol fuel cells
原文传递
Nitrification characteristics of nitrobacteria immobilized in waterborne polyurethane in wastewater of corn-based ethanol fuel production 被引量:14
13
作者 Yamei Dong Zhenjia Zhang +6 位作者 Yongwei Jin Jian Lut Xuehang Cheng Jun Li Yan-yan Deng Ya-nan Feng Dongning Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第6期999-1005,共7页
A technology to achieve stable and high ammonia nitrogen removal rates for corn distillery wastewater (ethanol fuel production) treatment has been designed.The characteristics of nitrifying bacteria entrapped in a w... A technology to achieve stable and high ammonia nitrogen removal rates for corn distillery wastewater (ethanol fuel production) treatment has been designed.The characteristics of nitrifying bacteria entrapped in a waterborne polyurethane (WPU) gel carrier were evaluated after acclimation.In the acclimation period,nitrification rates of WPU-immobilized nitrobacteria were monitored and polymerase chain reaction (PCR) was also carried out to investigate the change in ammonium-oxidizing bacteria.The results showed that the pellet nitrification rates increased from 21 to 228 mg-N/(L-pellet·hr) and the quantity of the ammonia oxidation bacteria increased substantially during the acclimation.A continuous ammonia removal experiment with the anaerobic pond effluent of a distillery wastewater system was conducted with immobilized nitrifying bacteria for 30 days using an 80 L airlift reactor with pellets at a fill ratio of 15% (V/V).Under the conditions of 75 mg/L influent ammonia,hydraulic retention time (HRT) of 3.7-5.6 hr,and dissolved oxygen (DO) of 4 mg/L,the effluent ammonia concentration was lower than 10 mg/L and the ammonia removal efficiency was 90%.While the highest ammonia removal rate,162 mg-N/(L-pellet·hr),was observed when the HRT was 1.3 hr. 展开更多
关键词 immobilized nitrobacteria corn distillery wastewater ethanol fuel production nitrification rate waterborne polyurethane gel
原文传递
Highly stable Pt_(3)Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation 被引量:1
14
作者 Mingxuan Li Yandi Cai +7 位作者 Jinjin Zhang Haixiao Sun Zhi Li Yujie Liu Xin Zhang Xiaoping Dai Fei Gao Weiyu Song 《Nano Research》 SCIE EI CSCD 2022年第4期3230-3238,共9页
Pt_(3)Ni alloy structure is an effective strategy to accelerate ethanol oxidation reaction(EOR),while the stability in acid electrolyte is the fatal weakness and the current density still needs to be enhanced.Herein,u... Pt_(3)Ni alloy structure is an effective strategy to accelerate ethanol oxidation reaction(EOR),while the stability in acid electrolyte is the fatal weakness and the current density still needs to be enhanced.Herein,ultralong Pt_(3)Ni nanowires tailored by trace Mo(Mo/Pt_(3)Ni NWs)were successfully synthesized by surfactant free method.The specific activity of the optimized catalyst was 2.66 mA·cm^(-2),which is approximately 2.16 and 4.6-fold that of Pt_(3)Ni NWs and commercial Pt/C catalyst,respectively.Most importantly,the Mo/Pt_(3)Ni NWs catalyst showed negligible structure degradation after 3,000 cycles(42 h)of durability test in 0.1 M HClO4 and 0.5 M ethanol,as compared to severe structural collapse and Ni dissolution for the pure Pt_(3)Ni NWs.The density functional theory(DFT)calculation also confirmed that both the surface and subsurface Mo atom could form Pt-Mo and Ni-Mo bonds with Pt and Ni,which were stronger than Pt-Ni bonds,to pin the Ni atoms in the unstable position and suppress the dissolution of surface Ni.The findings of this study indicate a promising pathway for the design and engineering of durable alloy nanocatalysts for direct ethanol fuel cell applications. 展开更多
关键词 ternary Pt-based alloy one-dimensional nanowires Mo decoration electronic effect direct ethanol fuel cells
原文传递
Hierarchical TiO_2/ZnO Nanostructure as Novel Non-precious Electrocatalyst for Ethanol Electrooxidation 被引量:1
15
作者 Gehan M.K.Tolba Nasser A.M.Barakat +5 位作者 A.M.Bastaweesy E.A.Ashour Wael Abdelmoez Mohamed H.El-Newehy Salem S.Al-Deyab Hak Yong Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第1期97-105,共9页
Metal oxides have a higher chemical stability in comparison to metals,so they can be utilized as electrocatalysts if the activity could be enhanced.Besides the composition,the morphology of the nanostructures has a co... Metal oxides have a higher chemical stability in comparison to metals,so they can be utilized as electrocatalysts if the activity could be enhanced.Besides the composition,the morphology of the nanostructures has a considerable impact on the electrocatalytic activity.In this work,zinc oxide nano branches-attached titanium dioxide nanofibers were investigated as an economic and stable catalyst for ethanol electrooxidation in the alkaline media.The introduced material has been synthesized by electrospinning process followed by hydrothermal technique.Briefly,electrospinning of colloidal solution consisting of titanium isopropoxide,poly(vinyl acetate) and zinc nanoparticles was performed to produce nanofibers embedding solid nanoparticles.In order to produce TiO2nanofibers containing ZnO nanoparticles,the obtained electrospun nanofiber mats were calcined in air at 600 °C.The formed ZnO nanoparticles were exploited as seeds to outgrow ZnO branches around the TiO2nanofibers using the hydrothermal technique at sub-critical water conditions in the presence of zinc nitrate and bis-hexamethylene triamine.The morphology of the final product,as well as the electrochemical measurements indicated that zinc nanoparticles content in the original electrospun nanofibers has a significant influence on the electrocatalytic activity as the best performance was observed with the nanofibers synthesized from electrospun solution containing 0.1 g Zn,and the corresponding current density was 37 mA/cm2.Overall,this study paves a way to titanium dioxide to be exploited to synthesize effective and stable metal oxide-based electrocatalysts. 展开更多
关键词 Direct ethanol fuel cells ELECTROSPINNING Nanofibe
原文传递
Platinum-based ternary catalysts for the electrooxidation of ethanol
16
作者 Guangxing Yang Qiao Zhang +1 位作者 Hao Yu Feng Peng 《Particuology》 SCIE EI CAS CSCD 2021年第5期169-186,共18页
Direct ethanol fuel cell(DEFC)as a promising device for converting chemical energy to electricity has been paid ever-increasing attention.However,the slow kinetics of ethanol electrooxidation at an anode hinders the a... Direct ethanol fuel cell(DEFC)as a promising device for converting chemical energy to electricity has been paid ever-increasing attention.However,the slow kinetics of ethanol electrooxidation at an anode hinders the application of DEFCs.Although Pt is the best catalyst among all the pure metal catalysts,it still has a relatively poor ability to break the Csingle bondC bond,is deactivated by the accumulated CO_(ad) intermediates,and undergoes unwanted desired structure change over long-term operation.In recent years,the addition of other metals to form binary,ternary,and quaternary catalysts have significantly improved electroactivity and stability.Ternary catalysts can have numerous element combinations and complicated architectures and,therefore,have been the subject of considerable research.In this review,most of the reported ternary catalysts will be summarized and categorized according to their structure while discussing the essence of the role of each component. 展开更多
关键词 Direct ethanol fuel cell ethanol oxidation reaction Ternary catalyst Composition-reactivity relationship
原文传递
High stability three-dimensional porous PtSn nano-catalyst for ethanol electro-oxidation reaction
17
作者 Yue Sun Haiyan Xiang +3 位作者 Huimin Li Gang Yu Hong Chen Song Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2491-2494,共4页
In addition to the theoretical research,direct ethanol fuel cells have great potential in practical applications.The performance of direct ethanol fuel cells largely depends on the electrocatalysts.Ptbased electrocata... In addition to the theoretical research,direct ethanol fuel cells have great potential in practical applications.The performance of direct ethanol fuel cells largely depends on the electrocatalysts.Ptbased electrocatalysts have been promising candidates for advancing direct ethanol fuel cells for its high catalytic activity and great durability.Here,a PtSn catalyst with unique three-dimensional porous nanostructure has been designed and synthesized via a two-step liquid phase reduction reaction.Sn formed a self-supporting framework in PtSn alloy particles(~3.5 nm).In ethanol electro-oxidation reaction,the PtSn catalyst exhibited high mass activity and excellent recycling time compared with that of Pt/C.After the morphology characterization before and after potential cycling,the PtSn alloy-based nano-catalyst showed good stability.The PtSn catalysts effectively avoid structural instability due to the external carriers,and prolong the leaching time of Sn.In addition,the introduction of a certain amount of Sn can also solve the poisoning phenomenon of active sites on Pt surface.The design strategy of porous alloy nano-catalyst sheds light on its applications in direct ethanol fuel cells. 展开更多
关键词 PTSN Porous structure Direct ethanol fuel cell ethanol electro-oxidation STABILITY
原文传递
Self-supporting trimetallic PtAuBi aerogels as electrocatalyst for ethanol oxidation reaction
18
作者 Chu Li Xiaoguo Tie +2 位作者 Yulin Min Qunjie Xu Qiaoxia Li 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第8期21-30,共10页
The creation of anodic ethanol oxidation reaction catalysts with superior all-around performance for direct ethanol fuel cells(DEFCs)has continued to attract the attention of researchers.An ultrathin trimetallic PtAuB... The creation of anodic ethanol oxidation reaction catalysts with superior all-around performance for direct ethanol fuel cells(DEFCs)has continued to attract the attention of researchers.An ultrathin trimetallic PtAuBi aerogel with branching,rough-surfaced 1D nanowires that self-assemble into a 3D porous network structure has been created in this study.It has a mass activity(MA)of 8045 mA mgPt^(-1)in an alkaline medium,which is 7.56 times greater than that of commercial Pt/C(1064 mA mgPt^(-1)).Notably,the catalytic activity and resistance to CO poisoning of PtAuBi aerogels are improved by the addition of an efficient"active additive"Au.The results analysis reveals that the increased performance of PtAuBi aerogel is mostly attributable to the integrated function of the 3D porous network structure,the downward shift of the Pt d-band center,and the synergistic effect of the"Pt-Bi"and/or"Pt-Au"dual active sites. 展开更多
关键词 PtAuBi aerogels ethanol oxidation reaction Carbon monoxide tolerance Direct ethanol fuel cells
原文传递
Combustion characteristics of nanofluid fuels in a half-opening slot tube 被引量:2
19
作者 LIU GuanNan LIU Dong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1075-1087,共13页
Combustion characteristics of nanofluid fuels containing aluminum nanoparticles were investigated in half-opening slot tubes from the fundamental view. The effects of particle loading rates(0.25% and 2.5% by weight), ... Combustion characteristics of nanofluid fuels containing aluminum nanoparticles were investigated in half-opening slot tubes from the fundamental view. The effects of particle loading rates(0.25% and 2.5% by weight), type of base fuels(ethanol and butanol),and fuel flow rates(0.2, 0.6, and 1 mL/min) were studied in details. The combustion characteristics of the nanofluid fuels and pure based fuels were also examined to provide a comparison. Flame was unstable with reignition, stable state, nearly extinguishment repeatedly at low flow rate. At medium flow rate, flame height was increased and flame tended to be stable. At high flow rate,flame became unstable and was disturbed by the droplet forming and dripping significantly. Al atoms inside the oxide layer should be melted before the particles combustion, while Al oxide layer should be melted before the particles aggregates combustion. The effects of particles on the combustion characteristics, especially on the evaporation rate of base fuel, were discussed. The reasons for various combustion phenomena of nanofluid fuels were given, which can provide the useful guidance for the experimental research and practical applications of nanofluid fuels. 展开更多
关键词 nanofluid fuel combustion aluminum ethanol butanol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部