We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the...We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.展开更多
This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensiona...This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensional(3-D)steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles.Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane,we construct a classical conical-supersonic solution near the curve under some reasonable assumptions.To overcome the difficulty caused by the parabolic degeneracy,we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane.The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully.We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.展开更多
基金supported in part by the UK Engineering and Physical Sciences Research Council Award EP/E035027/1 and EP/L015811/1
文摘We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.
基金the two referees for very helpful comments and suggestions to improve the quality of the paper.This work was partially supported by the Natural Science Foundation of Zhejiang province of China(LY21A010017)the National Natural Science Foundation of China(12071106,12171130).
文摘This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section.Under the conical assumption,the three-dimensional(3-D)steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles.Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane,we construct a classical conical-supersonic solution near the curve under some reasonable assumptions.To overcome the difficulty caused by the parabolic degeneracy,we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane.The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully.We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.