A quantitative analysis of the total concentrations of Al and Na in the Antarctic ice sheet during the past 340 kyr was performed by applying the acid digestion method to the Dome Fuji ice core. Atmospheric fluxes of ...A quantitative analysis of the total concentrations of Al and Na in the Antarctic ice sheet during the past 340 kyr was performed by applying the acid digestion method to the Dome Fuji ice core. Atmospheric fluxes of mineral and sea-salt aerosol to Dome Fuji were calculated from the total concentration. The average fluxes of mineral aerosol to Dome Fuji in the periods of glacial maximum, 18.6 ± 10.1 mg·m–2·yr–1, were larger than the value in the interglacial periods, 3.77 ± 2.20 mg·m–2·yr–1. Conversely, the fluxes of sea-salt have no significant difference between the average value of glacial maximum, 130 ± 55 mg·m–2·yr–1, and that of interglacial, 111 ± 54 mg·m–2·yr–1. The results obtained in this study suggest that the variation of mineral aerosol flux in Dome Fuji, together with climate change, was much larger than that of sea-salt aerosol flux. This result may have occurred because the variety in the intensity of the source and transport during the glacial-interglacial cycle is more significant for mineral aerosol than that for sea-salt aerosol.展开更多
This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretica...This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretically the zero dispersion wavelength can be tailored by respectively changing the rounded diameter of air holes, pitch, refractive index, normalized thickness of core rings, and hole diameter to pitch ratio. At the same time the tailoring of dispersion slope can also be realized by changing the rounded diameter of air holes or pitch or normalized thickness of core rings. To illustrate the reasonability of fibre designs, this paper also gives the variance of normalized interface field intensity which measures the scattering loss relatively versus wavelength for different designs. From the viewpoint of loss, varying the rounded diameter and the thickness of core ring could shift zero wavelength but it is difficult to get the required parameters within so tiny range in practical drawing of PBGFs, on the other hand, it is possible in practice to respectively alter the pitch and refractive index to shift zero wavelength. But varying hole diameter to pitch ratio is not worthwhile because they each induce large increase of loss and narrowness of transmission bandwidth. The zero dispersion wavelength can be engineered by respectively varying the rounded diameter of air holes, pitch, refractive index, and normalized thickness of core rings without incurring large loss penalties.展开更多
文摘A quantitative analysis of the total concentrations of Al and Na in the Antarctic ice sheet during the past 340 kyr was performed by applying the acid digestion method to the Dome Fuji ice core. Atmospheric fluxes of mineral and sea-salt aerosol to Dome Fuji were calculated from the total concentration. The average fluxes of mineral aerosol to Dome Fuji in the periods of glacial maximum, 18.6 ± 10.1 mg·m–2·yr–1, were larger than the value in the interglacial periods, 3.77 ± 2.20 mg·m–2·yr–1. Conversely, the fluxes of sea-salt have no significant difference between the average value of glacial maximum, 130 ± 55 mg·m–2·yr–1, and that of interglacial, 111 ± 54 mg·m–2·yr–1. The results obtained in this study suggest that the variation of mineral aerosol flux in Dome Fuji, together with climate change, was much larger than that of sea-salt aerosol flux. This result may have occurred because the variety in the intensity of the source and transport during the glacial-interglacial cycle is more significant for mineral aerosol than that for sea-salt aerosol.
基金supported by the National Natural Science Foundation of China (Grant No 60578043)the Beijing Education Committee Common Build Foundation (Grant No XK100130637)
文摘This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretically the zero dispersion wavelength can be tailored by respectively changing the rounded diameter of air holes, pitch, refractive index, normalized thickness of core rings, and hole diameter to pitch ratio. At the same time the tailoring of dispersion slope can also be realized by changing the rounded diameter of air holes or pitch or normalized thickness of core rings. To illustrate the reasonability of fibre designs, this paper also gives the variance of normalized interface field intensity which measures the scattering loss relatively versus wavelength for different designs. From the viewpoint of loss, varying the rounded diameter and the thickness of core ring could shift zero wavelength but it is difficult to get the required parameters within so tiny range in practical drawing of PBGFs, on the other hand, it is possible in practice to respectively alter the pitch and refractive index to shift zero wavelength. But varying hole diameter to pitch ratio is not worthwhile because they each induce large increase of loss and narrowness of transmission bandwidth. The zero dispersion wavelength can be engineered by respectively varying the rounded diameter of air holes, pitch, refractive index, and normalized thickness of core rings without incurring large loss penalties.