期刊文献+
共找到44,936篇文章
< 1 2 250 >
每页显示 20 50 100
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
1
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 Particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
FINITE ELEMENT-ARTIFICIAL TRANSMITTING BOUNDARY METHOD FOR WAVE SCATTERING FROM IRREGULAR CYLINDER 被引量:1
2
作者 杨吉生 徐立军 +1 位作者 邢昌玉 杨光 《Transactions of Tianjin University》 EI CAS 1997年第2期36-39,共4页
The finite element artificial transmitting boundary method is employed here to treat the near field scattering of a cylindrical wave from an irregular cylinder. A comparison is made between this method and the analy... The finite element artificial transmitting boundary method is employed here to treat the near field scattering of a cylindrical wave from an irregular cylinder. A comparison is made between this method and the analytical one. And then examples are given to demonstrate the solution of several problems of the irregular object scattering. The method can not only produce clear physical pictures, but can efficiently handle many complicated scattering problems. 展开更多
关键词 finite elements artificial transmitting boundary SCATTERING
下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
3
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
下载PDF
A Computational Framework for Parachute Inflation Based on Immersed Boundary/Finite Element Approach
4
作者 HUANG Yunyao ZHANG Yang +3 位作者 PU Tianmei JIA He WU Shiqing ZHOU Chunhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期502-514,共13页
A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i... A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation. 展开更多
关键词 parachute inflation fluid-structure interaction immersed boundary method finite element method adaptive mesh refinement
下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
5
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
下载PDF
Extended finite element-based cohesive zone method for modeling simultaneous hydraulic fracture height growth in layered reservoirs
6
作者 Lei Yang Baixi Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2960-2981,共22页
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy... In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed. 展开更多
关键词 Hydraulic fracturing Layered reservoir Simultaneous height growth In situ stress Fracture spacing Extended finite element method(XFEM) Cohesive zone method(CZM)
下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
7
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite element methods Heat Equation Predictor-Corrector Algorithm
下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
8
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation Beam Vibration Equation Hermite finite element method Error Estimation Numerical Simulation
下载PDF
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
9
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale finite element method MAGNETO-ELECTRO-ELASTIC Multifield Coupling Numerical Base Functions
下载PDF
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
10
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 Optimal Control Problem Gradient Recovery Two-Grid finite element method
下载PDF
HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 被引量:4
11
作者 Wang Tongke(王同科) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期213-225,共13页
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me... In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective. 展开更多
关键词 SECOND order ordinary differential equation TWO-POINT boundary value problem high accuracy finite volume element method error estimate.
下载PDF
Increment-Dimensional Scaled Boundary Finite Element Method for Solving Transient Heat Conduction Problem 被引量:2
12
作者 Li Fengzhi Li Tiantian +1 位作者 Kong Wei Cai Junfeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第6期1073-1079,共7页
An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness... An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method. 展开更多
关键词 heat conduction scaled boundary finite element method(SBFEM) temperature field accuracy
下载PDF
Application of scaled boundary finite element method in static and dynamic fracture problems 被引量:2
13
作者 Zhenjun Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第3期243-256,共14页
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe... The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods. 展开更多
关键词 Scaled boundary finite element method Dynamic stress intensity factors Mixed-mode crack propagation Remeshing algorithm Linear elastic fracture mechanics
下载PDF
Flow simulation considering adsorption boundary layer based on digital rock and finite element method 被引量:1
14
作者 Yong-Fei Yang Ke Wang +7 位作者 Qian-Fei Lv Roohollah Askari Qing-Yan Mei Jun Yao Jie-Xin Hou Kai Zhang Ai-Fen Li Chen-Chen Wang 《Petroleum Science》 SCIE CAS CSCD 2021年第1期183-194,共12页
Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,compara... Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats. 展开更多
关键词 Digital rock Low-permeability rocks CT technology Adsorption boundary layer Numerical simulation finite element method
下载PDF
THE COUPLING OF BOUNDARY ELEMENT AND FINITE ELEMENT METHODS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS 被引量:2
15
作者 何银年 李开泰 《Acta Mathematica Scientia》 SCIE CSCD 1991年第2期190-207,共18页
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat... In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided. 展开更多
关键词 THE COUPLING OF boundary element AND finite element methodS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS
下载PDF
3D finite element numerical simulation of advanced detection in roadway for DC focus method 被引量:5
16
作者 邓小康 柳建新 +2 位作者 刘海飞 童孝忠 柳卓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2187-2193,共7页
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detec... Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method. 展开更多
关键词 ROADWAY DC focus advanced detection finite element method
下载PDF
Dynamic Crack Propagation Analysis Using Scaled Boundary Finite Element Method 被引量:2
17
作者 林皋 朱朝磊 +1 位作者 李建波 胡志强 《Transactions of Tianjin University》 EI CAS 2013年第6期391-397,共7页
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre... The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other. 展开更多
关键词 scaled boundary finite element method dynamic stress intensity factor remeshing dynamic fracture
下载PDF
NONLINEAR BUCKLING ANALYSIS OF TUBING IN DEVIATED WELLS BY FINITE ELEMENT METHOD 被引量:9
18
作者 刘峰 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期36-42,共7页
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ... The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small. 展开更多
关键词 deviated wells drill-tubing BUCKLING non-linearity finite element method
下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
19
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
20
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部