This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was use...This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.展开更多
文摘This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.