In order to improve the emergency management capability of urban rail transit system and reduce accidents during metro operation,an emergency management capability evaluation method combining analytic hierarchy proces...In order to improve the emergency management capability of urban rail transit system and reduce accidents during metro operation,an emergency management capability evaluation method combining analytic hierarchy process(AHP)and technique for order preference by similarity to ideal solution(TOPSIS)is proposed.Based on the Prevention Preparation Response Recovery(PPRR)model,factors influencing the emergency management capability of the urban rail transit system are summarized from the perspective of‘human,machine,environment and management’.Then,an emergency management capability evaluation index system containing of 20 secondary indicators is constructed in four stages:emergency prevention,emergency preparation,emergency response and emergency recovery.The weights of indicators are calculated using the AHP method,and the closeness of each indicator to the optimal solution is analysed with the TOPSIS method.Finally,take the Beijing Metro Line 13 as an example to investigate the level of emergency management capability of urban rail transit.The results show that the emergency management capability of Beijing’s urban rail transit system is‘well’,among which hazard prevention measures(0.31)and emergency response team(0.34)have a greater weight on the emergency management capability of rail transit.The model can more accurately assess the emergency management capability of urban rail transit and provide a basis for emergency management.展开更多
Carbon sequestration and water conservation are two of the key ecosystem services that forests provide for societal need to address environmental issues.Optimization of the dual services is the ultimate goal in forest...Carbon sequestration and water conservation are two of the key ecosystem services that forests provide for societal need to address environmental issues.Optimization of the dual services is the ultimate goal in forest management for mitigating global climate change and safeguarding terrestrial water balance.However,there are some tradeoff s between gain in forest productivity and ecosystem water balance.We conducted literature review based on published articles for learned knowledge on forest carbon fi xation and hydrological regulations.Some knowledge gaps and research needs are identifi ed by examining the inter-connections between forest carbon sequestration and water conservation.Past researches have helped gain basic understanding of the mechanisms and controls of forest carbon fi xation and hydrological regulations as two separate issues.Tools and approaches are well established for quantifying and monitoring forest carbon and hydrological issues,operating at diff erent spatial and temporal scales.There are knowledge gaps on how to design aff orestation schemes facilitating enhanced ecosystem services in forest carbon sequestration and water conservation.For the top-down planning of aff orestation in regions where water availability is anticipated to be problematic,the questions of how much and where to plant for given land availability,known environmental implications,and sustained regional development and livelihood need to be addressed.For local management considerations,the questions of what and how to plant prevail.Eff orts are needed in joint studies of forest carbon sequestration and water conservation functionalities,specifi cally in relation to establishment and management of planted forests aiming for delivering regulatory ecosystem services in carbon sequestration,water conservation and other social values.We propose an integrated framework with dual consideration of carbon sequestration and water conservation in forest management for future research pursue.展开更多
Along with the environmental pollution causes complexity and diversity increases ceaselessly, “national environmental protection” Twelfth Five “planning” (hereinafter referred to as “planning”) will be the envir...Along with the environmental pollution causes complexity and diversity increases ceaselessly, “national environmental protection” Twelfth Five “planning” (hereinafter referred to as “planning”) will be the environmental risk prevention as the “12th Five-Year Plan” one of the important tasks, including advancing environmental risk management in the whole process, key areas the environmental risk prevention measures. The whole process environmental risk management covers a risk source recognition, receptor vulnerability assessment, environmental risk characterization, risk decision and risk assessment of accident loss. This article from the environmental risk source classification, environmental risk classification management, environmental emergency response and environmental risk and insurance environment four aspects put forward the “12th Five-Year Plan” whole process environmental risk management content, to further reduce our country environmental pollution accident risk and policy makers to provide some decision support.展开更多
Critical infrastructures (CI) are difficult to handle due to their complexity, size and the number of stakeholders involved. During emergency situations (e.g. fire or terrorist attack), a CI operator in the control ro...Critical infrastructures (CI) are difficult to handle due to their complexity, size and the number of stakeholders involved. During emergency situations (e.g. fire or terrorist attack), a CI operator in the control room is faced with a flood of information coming from different sensors and legacy monitoring systems. Since in these situations, time is critical and the operators are under a great deal of pressure, a holistic management of all the technical systems and actors involved is needed, reinforced by the Recommendation and Decision Support System (RDSS) that helps emergency managers to take correct and timely decisions. One way to provide an adequate RDSS support to the operator is proposed in this paper which is based on an intelligent, event driven layer that sits on top of the legacy CI monitoring system. Powered by the complex event processing capabilities and facility data model implemented in the form of CI ontology, this layer processes events originating from different sources, conducts the situation and risk assessment, and reacts accordingly, either automatically or via recommendations proposed to emergency personnel. To validate the proposed approach, an event-driven RDSS was deployed on an airport use case (Nikola Tesla airport in Belgrade), as one of the most complex CIs.展开更多
基金This work was supported by the Fundamental Research Funds for the Science and Technology Innovation Program for Higher Education Institutions in Shanxi Province(Grants No.2022L448 and 2022L449)the Doctoral Research Startup Project of Shanxi Datong University(Grants No.2020-B-18 and 2020-B-08).
文摘In order to improve the emergency management capability of urban rail transit system and reduce accidents during metro operation,an emergency management capability evaluation method combining analytic hierarchy process(AHP)and technique for order preference by similarity to ideal solution(TOPSIS)is proposed.Based on the Prevention Preparation Response Recovery(PPRR)model,factors influencing the emergency management capability of the urban rail transit system are summarized from the perspective of‘human,machine,environment and management’.Then,an emergency management capability evaluation index system containing of 20 secondary indicators is constructed in four stages:emergency prevention,emergency preparation,emergency response and emergency recovery.The weights of indicators are calculated using the AHP method,and the closeness of each indicator to the optimal solution is analysed with the TOPSIS method.Finally,take the Beijing Metro Line 13 as an example to investigate the level of emergency management capability of urban rail transit.The results show that the emergency management capability of Beijing’s urban rail transit system is‘well’,among which hazard prevention measures(0.31)and emergency response team(0.34)have a greater weight on the emergency management capability of rail transit.The model can more accurately assess the emergency management capability of urban rail transit and provide a basis for emergency management.
基金Ministry of Science and Technology of China(Grant No.2016YFC0502104).
文摘Carbon sequestration and water conservation are two of the key ecosystem services that forests provide for societal need to address environmental issues.Optimization of the dual services is the ultimate goal in forest management for mitigating global climate change and safeguarding terrestrial water balance.However,there are some tradeoff s between gain in forest productivity and ecosystem water balance.We conducted literature review based on published articles for learned knowledge on forest carbon fi xation and hydrological regulations.Some knowledge gaps and research needs are identifi ed by examining the inter-connections between forest carbon sequestration and water conservation.Past researches have helped gain basic understanding of the mechanisms and controls of forest carbon fi xation and hydrological regulations as two separate issues.Tools and approaches are well established for quantifying and monitoring forest carbon and hydrological issues,operating at diff erent spatial and temporal scales.There are knowledge gaps on how to design aff orestation schemes facilitating enhanced ecosystem services in forest carbon sequestration and water conservation.For the top-down planning of aff orestation in regions where water availability is anticipated to be problematic,the questions of how much and where to plant for given land availability,known environmental implications,and sustained regional development and livelihood need to be addressed.For local management considerations,the questions of what and how to plant prevail.Eff orts are needed in joint studies of forest carbon sequestration and water conservation functionalities,specifi cally in relation to establishment and management of planted forests aiming for delivering regulatory ecosystem services in carbon sequestration,water conservation and other social values.We propose an integrated framework with dual consideration of carbon sequestration and water conservation in forest management for future research pursue.
文摘Along with the environmental pollution causes complexity and diversity increases ceaselessly, “national environmental protection” Twelfth Five “planning” (hereinafter referred to as “planning”) will be the environmental risk prevention as the “12th Five-Year Plan” one of the important tasks, including advancing environmental risk management in the whole process, key areas the environmental risk prevention measures. The whole process environmental risk management covers a risk source recognition, receptor vulnerability assessment, environmental risk characterization, risk decision and risk assessment of accident loss. This article from the environmental risk source classification, environmental risk classification management, environmental emergency response and environmental risk and insurance environment four aspects put forward the “12th Five-Year Plan” whole process environmental risk management content, to further reduce our country environmental pollution accident risk and policy makers to provide some decision support.
文摘Critical infrastructures (CI) are difficult to handle due to their complexity, size and the number of stakeholders involved. During emergency situations (e.g. fire or terrorist attack), a CI operator in the control room is faced with a flood of information coming from different sensors and legacy monitoring systems. Since in these situations, time is critical and the operators are under a great deal of pressure, a holistic management of all the technical systems and actors involved is needed, reinforced by the Recommendation and Decision Support System (RDSS) that helps emergency managers to take correct and timely decisions. One way to provide an adequate RDSS support to the operator is proposed in this paper which is based on an intelligent, event driven layer that sits on top of the legacy CI monitoring system. Powered by the complex event processing capabilities and facility data model implemented in the form of CI ontology, this layer processes events originating from different sources, conducts the situation and risk assessment, and reacts accordingly, either automatically or via recommendations proposed to emergency personnel. To validate the proposed approach, an event-driven RDSS was deployed on an airport use case (Nikola Tesla airport in Belgrade), as one of the most complex CIs.