Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels fo...Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details.展开更多
Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a numbe...Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.展开更多
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di...Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.展开更多
Carbon capture,utilization,and storage(CCUS)is estimated to contribute substantial CO_(2)emission reduction to carbon neutrality in China.There is yet a large gap between such enormous demand and the current capacity,...Carbon capture,utilization,and storage(CCUS)is estimated to contribute substantial CO_(2)emission reduction to carbon neutrality in China.There is yet a large gap between such enormous demand and the current capacity,and thus a sound enabling environment with sufficient policy support is imperative for CCUS development.This study reviewed 59 CCUS-related policy documents issued by the Chinese government as of July 2022,and found that a supporting policy framework for CCUS is taking embryonic form in China.More than ten departments of the central government have involved CCUS in their policies,of which the State Council,the National Development and Reform Commission(NDRC),the Ministry of Science and Technology(MOST),and the Ministry of Ecological Environment(MEE)have given the greatest attention with different focuses.Specific policy terms are further analyzed following the method of content analysis and categorized into supply-,environment-and demand-type policies.The results indicate that supply-type policies are unbalanced in policy objectives,as policy terms on technology research and demonstration greatly outnumber those on other objectives,and the attention to weak links and industrial sectors is far from sufficient.Environment-type policies,especially legislations,standards,and incentives,are inadequate in pertinence and operability.Demand-type policies are absent in the current policy system but is essential to drive the demand for the CCUS technology in domestic and foreign markets.To meet the reduction demand of China's carbon neutral goal,policies need to be tailored according to needs of each specific technology and implemented in an orderly manner with well-balanced use on multiple objectives.展开更多
In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis...In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na_(2)CO_(3)products using simulated seawater concentrate,achieving simultaneous saline wastewater utilization,carbon storage and high-value production of Na_(2)CO_(3).The effects of various factors,including concentration of simulated seawater concentrate,current density,CO_(2)aeration rate,and circulating flow rate of alkali chamber,on the quality of Na_(2)CO_(3)product,carbon sequestration rate,and energy consumption were investigated.Under the optimal condition,the CO_(3)^(2-)concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol%purity.The resulting carbon fixation rate was 70.50%,with energy consumption for carbon sequestration and product production of 5.7 k Whr/m^(3)CO_(2)and1237.8 k Whr/ton Na_(2)CO_(3),respectively.This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources.展开更多
Thecoal-to-liquidcoupledwithcarbon capture,utilization,and storage technology has the potential to reduce CO_(2)emissions,but its carbon footprint and cost assessment are still insufficient.In this paper,coal mining t...Thecoal-to-liquidcoupledwithcarbon capture,utilization,and storage technology has the potential to reduce CO_(2)emissions,but its carbon footprint and cost assessment are still insufficient.In this paper,coal mining to oil production is taken as a life cycle to evaluate the carbon footprint and levelized costs of direct-coal-toliquid and indirect-coal-to-liquid coupled with the carbon capture utilization and storage technology under three scenarios:non capture,process capture,process and public capture throughout the life cycle.The results show that,first,the coupling carbon capture utilization and storage technology can reduce CO_(2)footprint by 28%-57%from 5.91 t CO_(2)/t:oil of direct-coal-to-liquid and 24%-49%from 7.10 t CO_(2)/t:oil of indirect-coal-to-liquid.Next,the levelized cost of direct-coal-to-liquid is 648-1027$/t of oil,whereas that of indirect-coal-to-liquid is 653-1065$/t of oil.When coupled with the carbon capture utilization and storage technology,the levelized cost of direct-coalto-liquid is 285-1364$/t of oil,compared to 1101-9793/t of oil for indirect-coal-to-liquid.Finally,sensitivity analysis shows that CO_(2)transportation distance has the greatest impact on carbon footprint,while coal price and initial investment cost significantly affect the levelized cost ofcoal-to-liquid.展开更多
Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2)...Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.展开更多
现阶段煤电仍是我国主要能源,装机总量大,短时间难以被完全替代,未来燃煤电厂高效清洁燃烧的技术标准是低碳排放。当前,双碳战略已上升到国家生态文明的高度,煤电亟需适应未来需求的碳捕集封存与利用(Carbon Capture Utilization and St...现阶段煤电仍是我国主要能源,装机总量大,短时间难以被完全替代,未来燃煤电厂高效清洁燃烧的技术标准是低碳排放。当前,双碳战略已上升到国家生态文明的高度,煤电亟需适应未来需求的碳捕集封存与利用(Carbon Capture Utilization and Storage,CCUS)技术。但国内已有超低排放电厂投运的CCUS设备普遍存在捕集成本高、产物利用量有限等问题,开发成本低、捕集产物可有效利用的CCUS技术是电力环保的共同需求。为此,提出煤电CCUS未来技术发展方向应该是烟气污染物一体化耦合控制,如应用等离子体氧化技术,首先氧化烟气中还原性污染物SO_(2)、NO等,而后以氨水为吸收剂协同脱硫脱硝脱碳,整体污染物脱除流程简单,副产品具有广阔的化工转化空间。继而提出稳定的氨源供给是实现上述一体化脱除的物质保障,构建燃煤电厂自给自足的制氨过程为煤电未来开发更丰富的产品线(氨能、肥料、化工品等)提供了可能。展开更多
基金the National Natural Science Foun-dation of China(51836006).
文摘Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details.
文摘Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.
基金the National Key R&D Program of China(No.2019YFB1504102).
文摘Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.
基金the Cooperative Project of the Chinese Academy of Engineering(Grant No.202001SDZD01).
文摘Carbon capture,utilization,and storage(CCUS)is estimated to contribute substantial CO_(2)emission reduction to carbon neutrality in China.There is yet a large gap between such enormous demand and the current capacity,and thus a sound enabling environment with sufficient policy support is imperative for CCUS development.This study reviewed 59 CCUS-related policy documents issued by the Chinese government as of July 2022,and found that a supporting policy framework for CCUS is taking embryonic form in China.More than ten departments of the central government have involved CCUS in their policies,of which the State Council,the National Development and Reform Commission(NDRC),the Ministry of Science and Technology(MOST),and the Ministry of Ecological Environment(MEE)have given the greatest attention with different focuses.Specific policy terms are further analyzed following the method of content analysis and categorized into supply-,environment-and demand-type policies.The results indicate that supply-type policies are unbalanced in policy objectives,as policy terms on technology research and demonstration greatly outnumber those on other objectives,and the attention to weak links and industrial sectors is far from sufficient.Environment-type policies,especially legislations,standards,and incentives,are inadequate in pertinence and operability.Demand-type policies are absent in the current policy system but is essential to drive the demand for the CCUS technology in domestic and foreign markets.To meet the reduction demand of China's carbon neutral goal,policies need to be tailored according to needs of each specific technology and implemented in an orderly manner with well-balanced use on multiple objectives.
基金supported by the Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.226Z3102G)the Fundamental Research Funds of Hebei University of Technology(No.JBKYTD2001)the Science Research Project of Hebei Education Department(No.QN2022089)。
文摘In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na_(2)CO_(3)products using simulated seawater concentrate,achieving simultaneous saline wastewater utilization,carbon storage and high-value production of Na_(2)CO_(3).The effects of various factors,including concentration of simulated seawater concentrate,current density,CO_(2)aeration rate,and circulating flow rate of alkali chamber,on the quality of Na_(2)CO_(3)product,carbon sequestration rate,and energy consumption were investigated.Under the optimal condition,the CO_(3)^(2-)concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol%purity.The resulting carbon fixation rate was 70.50%,with energy consumption for carbon sequestration and product production of 5.7 k Whr/m^(3)CO_(2)and1237.8 k Whr/ton Na_(2)CO_(3),respectively.This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources.
基金the National Natural Science Foundation of China(Grant Nos.72174196 and 71874193)Open Fund of State Key Laboratory of Coal Resources and Safe Mining(China University of Mining and Technology)(Grant Nos.SKLCRSM21KFA05 and SKLCRSM22KFA09)the Fundamental Research Funds for the Central Universities(Grant No.2022JCCXNY02).
文摘Thecoal-to-liquidcoupledwithcarbon capture,utilization,and storage technology has the potential to reduce CO_(2)emissions,but its carbon footprint and cost assessment are still insufficient.In this paper,coal mining to oil production is taken as a life cycle to evaluate the carbon footprint and levelized costs of direct-coal-toliquid and indirect-coal-to-liquid coupled with the carbon capture utilization and storage technology under three scenarios:non capture,process capture,process and public capture throughout the life cycle.The results show that,first,the coupling carbon capture utilization and storage technology can reduce CO_(2)footprint by 28%-57%from 5.91 t CO_(2)/t:oil of direct-coal-to-liquid and 24%-49%from 7.10 t CO_(2)/t:oil of indirect-coal-to-liquid.Next,the levelized cost of direct-coal-to-liquid is 648-1027$/t of oil,whereas that of indirect-coal-to-liquid is 653-1065$/t of oil.When coupled with the carbon capture utilization and storage technology,the levelized cost of direct-coalto-liquid is 285-1364$/t of oil,compared to 1101-9793/t of oil for indirect-coal-to-liquid.Finally,sensitivity analysis shows that CO_(2)transportation distance has the greatest impact on carbon footprint,while coal price and initial investment cost significantly affect the levelized cost ofcoal-to-liquid.
文摘Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.
文摘现阶段煤电仍是我国主要能源,装机总量大,短时间难以被完全替代,未来燃煤电厂高效清洁燃烧的技术标准是低碳排放。当前,双碳战略已上升到国家生态文明的高度,煤电亟需适应未来需求的碳捕集封存与利用(Carbon Capture Utilization and Storage,CCUS)技术。但国内已有超低排放电厂投运的CCUS设备普遍存在捕集成本高、产物利用量有限等问题,开发成本低、捕集产物可有效利用的CCUS技术是电力环保的共同需求。为此,提出煤电CCUS未来技术发展方向应该是烟气污染物一体化耦合控制,如应用等离子体氧化技术,首先氧化烟气中还原性污染物SO_(2)、NO等,而后以氨水为吸收剂协同脱硫脱硝脱碳,整体污染物脱除流程简单,副产品具有广阔的化工转化空间。继而提出稳定的氨源供给是实现上述一体化脱除的物质保障,构建燃煤电厂自给自足的制氨过程为煤电未来开发更丰富的产品线(氨能、肥料、化工品等)提供了可能。