As one of the most important narrow bandgap ternary semiconductors, GaAs1−xSbx nanowires (NWs) have attracted extensive attention recently, due to the superior hole mobility and the tunable bandgap, which covers the w...As one of the most important narrow bandgap ternary semiconductors, GaAs1−xSbx nanowires (NWs) have attracted extensive attention recently, due to the superior hole mobility and the tunable bandgap, which covers the whole near-infrared (NIR) region, for technological applications in next-generation high-performance electronics and NIR photodetection. However, it is still a challenge to the synthesis of high-quality GaAs1−xSbx NWs across the entire range of composition, resulting in the lack of correlation investigation among stoichiometry, microstructure, electronics, and NIR photodetection. Here, we demonstrate the success growth of high-quality GaAs1−xSbx NWs with full composition range by adopting a simple and low-cost surfactant-assisted solid source chemical vapor deposition method. All of the as-prepared NWs are uniform, smooth, and straight, without any phase segregation in all stoichiometric compositions. The lattice constants of each NW composition have been well correlated with the chemical stoichiometry and confirmed by high-resolution transmission electron microscopy, X-ray diffraction, and Raman spectrum. Moreover, with the increase of Sb concentration, the hole mobility of the as-fabricated field-effect-transistors and the responsivity and detectivity of the as-fabricated NIR photodetectors increase accordingly. All the results suggest a careful stoichiometric design is required for achieving optimal NW device performances.展开更多
基金We acknowledge the National Key R&D Program of China(No.2017YFA0305500)the National Natural Science Foundation of China(Nos.61904096 and 11774050)+3 种基金the Taishan Scholars Program of Shandong Province(No.tsqn201812006)Royal Society-Newton Advanced Fellowship(No.NA170214)Aero-Science Fund ASFC-20170269003,Shandong University multidisciplinary research and the innovation team of young scholars(No.2020QNQT015)“Outstanding youth scholar and Qilu young scholar”programs of Shandong University.
文摘As one of the most important narrow bandgap ternary semiconductors, GaAs1−xSbx nanowires (NWs) have attracted extensive attention recently, due to the superior hole mobility and the tunable bandgap, which covers the whole near-infrared (NIR) region, for technological applications in next-generation high-performance electronics and NIR photodetection. However, it is still a challenge to the synthesis of high-quality GaAs1−xSbx NWs across the entire range of composition, resulting in the lack of correlation investigation among stoichiometry, microstructure, electronics, and NIR photodetection. Here, we demonstrate the success growth of high-quality GaAs1−xSbx NWs with full composition range by adopting a simple and low-cost surfactant-assisted solid source chemical vapor deposition method. All of the as-prepared NWs are uniform, smooth, and straight, without any phase segregation in all stoichiometric compositions. The lattice constants of each NW composition have been well correlated with the chemical stoichiometry and confirmed by high-resolution transmission electron microscopy, X-ray diffraction, and Raman spectrum. Moreover, with the increase of Sb concentration, the hole mobility of the as-fabricated field-effect-transistors and the responsivity and detectivity of the as-fabricated NIR photodetectors increase accordingly. All the results suggest a careful stoichiometric design is required for achieving optimal NW device performances.