This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power ...There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.展开更多
As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this articl...As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this article, the device to protect transformer from DC magnetic bias is designed. On the basis of load DC current, a magnetic bias protection device is developed by combination of current sensor, electric information collection circuit, signal filtering circuit, signal modulating circuits, fault feature judging circuit, automatic range tracking circuit, intelligent logic synthesis unit and implementation output circuit. By operating in temperature-rise test equipment in the high power electronic lab, the device is proved with reliability, high sensitivity and worthy of promotion and application.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a ...Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.展开更多
Until very recently, gallium oxide(Ga_2O_3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic e...Until very recently, gallium oxide(Ga_2O_3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of250 cm2/(V·s), yielding a high Baliga's figures-of-merit(FOM) of more than 3000, which is several times higher than GaN and SiC.In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga_2O_3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances ofβ-Ga_2O_3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga_2O_3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga_2O_3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga_2O_3 are also discussed and explored.展开更多
The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. ...The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.展开更多
Power electronic devices are the core components of modern power converters,not only for normal applications,but also for extreme conditions.Current design of power electronic devices require large redundancies for re...Power electronic devices are the core components of modern power converters,not only for normal applications,but also for extreme conditions.Current design of power electronic devices require large redundancies for reliability.This results in huge volume and weight for a large-capacity power converter,especially for some extreme applications.Therefore,to optimize the power density,the reliability of power devices needs to be investigated first in order to obtain the accurate operational margin of a power device.Although much research on device failure analysis has been reported,there still lacks efficient failure evaluation methods.This paper first summarizes the current failure research.Then,a three-step failure analysis method of power electronic devices is proposed as:failure information collection,failure identification and mechanism,and failure evaluation.The physics-based modeling method is emphasized since it has a strong relationship with the device fundamentals.After that,power electronic device applications under extreme conditions are introduced and a design method of device under extreme conditions is proposed based on the thermal equilibrium idea.Finally,the challenges and prospects to improve the power device reliability under extreme conditions are concluded.展开更多
文摘This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
文摘There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.
文摘As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this article, the device to protect transformer from DC magnetic bias is designed. On the basis of load DC current, a magnetic bias protection device is developed by combination of current sensor, electric information collection circuit, signal filtering circuit, signal modulating circuits, fault feature judging circuit, automatic range tracking circuit, intelligent logic synthesis unit and implementation output circuit. By operating in temperature-rise test equipment in the high power electronic lab, the device is proved with reliability, high sensitivity and worthy of promotion and application.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
文摘Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.
文摘Until very recently, gallium oxide(Ga_2O_3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of250 cm2/(V·s), yielding a high Baliga's figures-of-merit(FOM) of more than 3000, which is several times higher than GaN and SiC.In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga_2O_3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances ofβ-Ga_2O_3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga_2O_3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga_2O_3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga_2O_3 are also discussed and explored.
文摘The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.
基金the key program of National Natural Science Foundation of China under Grant 51490681National Key Basic Research Program of China(973 Program)under Grant 2015CB251004National Natural Science Foundation of China under Grant 51507185.
文摘Power electronic devices are the core components of modern power converters,not only for normal applications,but also for extreme conditions.Current design of power electronic devices require large redundancies for reliability.This results in huge volume and weight for a large-capacity power converter,especially for some extreme applications.Therefore,to optimize the power density,the reliability of power devices needs to be investigated first in order to obtain the accurate operational margin of a power device.Although much research on device failure analysis has been reported,there still lacks efficient failure evaluation methods.This paper first summarizes the current failure research.Then,a three-step failure analysis method of power electronic devices is proposed as:failure information collection,failure identification and mechanism,and failure evaluation.The physics-based modeling method is emphasized since it has a strong relationship with the device fundamentals.After that,power electronic device applications under extreme conditions are introduced and a design method of device under extreme conditions is proposed based on the thermal equilibrium idea.Finally,the challenges and prospects to improve the power device reliability under extreme conditions are concluded.