We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
By friction heating single point incremental forming,truncated square pyramid parts with different draw angles of a magnesium alloy AZ31 B were formed at room temperature.Metallurgical,tensile and micro-hardness tests...By friction heating single point incremental forming,truncated square pyramid parts with different draw angles of a magnesium alloy AZ31 B were formed at room temperature.Metallurgical,tensile and micro-hardness tests were carried out to obtain the effects of wall angle on microstructure and mechanical properties. The results show that grain in side wall of the formed parts becomes refined significantly. Furthermore,with the increase of draw angle,grain size increases,but strength,hardness and plasticity decrease. In addition, surface roughness tests were performed on the formed surface to determine the influence of speed of forming tool. The results show that surface roughness has a little increase with the increase of tool rotational speed.展开更多
In total, there are 12 systems, 60 point groups and 89 single forms in crystals and quasicrystals. Among them, 5 new systems, 28 new point groups and 42 new single forms belong to quasicrystals, while the other 7 syst...In total, there are 12 systems, 60 point groups and 89 single forms in crystals and quasicrystals. Among them, 5 new systems, 28 new point groups and 42 new single forms belong to quasicrystals, while the other 7 systems, 32 point groups and 47 single forms belong to crystals. In this paper, the point groups and single forms of quasicrystals are deduced and drawn as stereographic projections by the rules of crystallographic point groups. These stereographic projections integrate the crystal and quasicrystal symmetry theories.展开更多
This paper mainly deals with the point groups and single forms of octagonal quasicrystals and the description of one-dimensional quasilattice. The authors present a new sequence for describing the arrangement of quasi...This paper mainly deals with the point groups and single forms of octagonal quasicrystals and the description of one-dimensional quasilattice. The authors present a new sequence for describing the arrangement of quasiperiods in one-dimensional quasilattice. The first ten numbers of quasiperiods of this sequence are 1, 1, 2, 5, 12, 29, 70, 169, 408 and 985. The arrangement of quasiperiods in the first five steps are a, b, ab. babab and babababbabab. Seven p(?)nt groups and nine single forms for the octagonal system have been deduced, They are as follows: Point groups: 8.8m, 82, 8/m, 8/mmm, 8 and 82m; single forms: octagonal prism, dioctagonal prism. octagonal pyramid. dioctagonal pyramid. octagonal dipyramid, dioctagonal dipyramid, octagonal scalenohedron, dioctagonal scalenohedron and octagonal trapezohedron. Besides seven point groups and nine single forms for the dodecahegonal system have also been deduced.展开更多
As a type of multiconfiguration mechanism that can operate in an under-actuated state,metamorphic mechanisms were proposed more than two decades ago and attracted significant interest.Studies on structural synthesis o...As a type of multiconfiguration mechanism that can operate in an under-actuated state,metamorphic mechanisms were proposed more than two decades ago and attracted significant interest.Studies on structural synthesis of metamorphic mechanisms tend to focus more on metamorphic techniques and the structural synthesis of source mechanisms for metamorphic mechanisms.By designing different constraint architectures of metamorphic joints,multistructures can be obtained from the same source metamorphic mechanism.To determine the constraint architectures of metamorphic joints and their different assembly combinations,a kinematic status matrix and a corresponding constraint status matrix are constructed based on the metamorphic cyclogram of a source mechanism.According to the equivalent resistance gradient model and the constraint status matrix,an equivalent resistance matrix for the metamorphic joints is proposed.A structural synthesis matrix of the metamorphic mechanism is then obtained from the equivalent resistance matrix by deducing the constraint form vectors of the metamorphic joints.Furthermore,a kinematic diagram synthesis of the source metamorphic mechanism of a planar single-loop metamorphic mechanism is proposed,which is based on only the 14 one-or zero-degrees-of-freedom linkage groups.The entire structural design method of a metamorphic mechanism is based on the structural synthesis matrix and is presented as a systematic process.Finally,the proposed structural design approach is illustrated by two examples to verify its feasibility and practicality.This study provides an effective method for designing a practical multi-mobility and multiconfiguration planar single-loop metamorphic mechanism with a single actuator.展开更多
Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material. The solidification microstructure in the sample was investigated. It was found th...Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material. The solidification microstructure in the sample was investigated. It was found that the solidification microstructure was greatly influenced by the crystallography orientation of the substrate and the local solidification conditions. When the angle between the preferred orientation of the single crystal and the direction of heat flow in the cladding layer is less than 30°, single crystal cladding layers were acquired. Otherwise the crystallography orientation of the cladding layer will deviate from the orientation of the substrate and the microstructure with polycrystalline appears. Meanwhile, even when the experiments were performed on the same preferred crystal surface, the solidification microstructures will be different distinctly resulting from the variation of the local solidification conditions. The secondary arms were degenerated and the primary arm spacing was about 10\|20 μm. Further investigation shows that the phases of the cladding layer are mainly made up of γ,γ′ , the flower\|like γ/γ′ eutectic and carbide. The morphology of γ′ was cubical and the size is less than 0.1μm. {展开更多
This study performs single point incremental forming(SPIF)on two aluminum alloys(i.e.AA5754 and AA6061),and analyzes their post forming mechanical properties and microstructure evolution.The forming parameters namely ...This study performs single point incremental forming(SPIF)on two aluminum alloys(i.e.AA5754 and AA6061),and analyzes their post forming mechanical properties and microstructure evolution.The forming parameters namely wall angle(35°-55°),feed rate(1-4 m/min),spindle rotational speed(50-1000 r/min),and lubricant(grease and hydraulic oil)are varied to probe detailed processing effects.The pre-and post-SPIF mechanical properties and microstructures are characterized by conducting tensile tests and optical microscopy,respectively.It is shown that an increase in the wall angle,feed rate and rotational speed causes microscopic variations in the alloys such that the grains of AA5754 and the second phase particles of AA6061 elongate.As a result,the ultimate tensile strength of the formed parts is increased by 10%for AA5754 and by 8%for AA6061.And,the ductility of AA5754 is decreased from 22.9%to 12%and that of AA6061 is decreased from 16%to 10.7%.Regarding the lubricant effect,it is shown that the mechanical properties remain insensitive to the type of lubricant employed.These results indicate that SPIF processing modifies the microstructure of Al alloys in a way to enhance the strength at the cost of ductility.展开更多
In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron mic...In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant, The soot particle is present as floccule with average size around 10 μm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.展开更多
Straight plates, hollow columns, ear-like blade tips, twist plates withdirectional solidification microstructure made of Rene 95 superalloys were successfully fabricatedon Nickel-base superalloy and DD3 substrates, re...Straight plates, hollow columns, ear-like blade tips, twist plates withdirectional solidification microstructure made of Rene 95 superalloys were successfully fabricatedon Nickel-base superalloy and DD3 substrates, respectively. The processing conditions for productionof the parts with corresponding shapes were obtained. The fabrication precision was high and thecomponents were compact. The solidification microstructure of the parts was analyzed by opticalmicroscopy. The results show that the solidification microstructure is composed of columnardendrites, by epitaxial growth onto the directional solidification substrates. The crystallographyorientation of the parts was parallel to that of the substrates. The primary arm spacing was about10 mum, which is in the range of superfine dendrites, and the secondary arm was small or evendegenerated. It is concluded that the laser metal forming technique provides a method to manufacturedirectional solidification components.展开更多
The influence of the size of pre-cut hole of blank on the formability of cylindrical hole flanging in single point incremental forming(SPIF) was studied. The flange is produced in four stages starting from 45° ...The influence of the size of pre-cut hole of blank on the formability of cylindrical hole flanging in single point incremental forming(SPIF) was studied. The flange is produced in four stages starting from 45° to 90° and employing aluminum as the test material. It is shown that the hole size has significant effects on the stress/strain distribution on the cylindrical flange. The magnitude of hoop strains increases and the flange thickness increases as the hole size increases. Likewise, the von Mises stress reduces with the increasing of hole size. Further, there is a threshold value of hole size(i.e., 80 mm) below which severe stresses occur, which lead to sheet fracturing thus failing the successful forming of cylindrical flange. Moreover, the formability reduces as the hole size is increased above the threshold size. Finally, it is concluded that 80 mm is the threshold size of hole for maximizing the formability of aluminum sheet in incremental hole flanging.展开更多
A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geomet...A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.展开更多
Rene95 powder and different substrates were selected to be conducted by the laser metal forming technique. It is found that the cladding layers with either columnar or equiaxed grains can be obtained under different s...Rene95 powder and different substrates were selected to be conducted by the laser metal forming technique. It is found that the cladding layers with either columnar or equiaxed grains can be obtained under different solidification conditions. As the crystallography orientation of the substrate influences that of the cladding layers strongly. Multi-grain cladding layers can be obtained on the multi-grain substrate, while directional solidification columnar or even single crystal cladding layer can be achieved on the directional solidification or single crystal substrate.The mechanism of microstructure formation in the cladding layer was furtherly investigated according to the columnar/equiaxed transition profile. In addition,an ear-like single crystal component was manufactured using the DD3 single crystal as substrate. The yield strength at room temperature was examined on the heat-treated slice sample. The results indicate that the yield strength is about 97.9% of that of the powder metallurgical tensile sample while the plasticity overpasses 80% of the powder metallurgical tensile sample.展开更多
针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移...针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移矩阵的单位膜约束和能量接收器的最小能量约束,以最大化信息传输速率为目标,联合优化了基站处的波束成形向量和智能反射面的反射波束成形向量。为解决非凸优化问题,提出了一种基于深度强化学习的深度确定性策略梯度(DDPG, deep deterministic policy gradient)算法。仿真结果表明,DDPG算法的平均奖励与学习率有关,在选取合适的学习率的条件下,DDPG算法能获得与传统优化算法相近的平均互信息,但运行时间明显低于传统的非凸优化算法,即使增加天线数和反射单元数,DDPG算法依然可以在较短的时间内收敛。这说明DDPG算法能有效地提高计算效率,更适合实时性要求较高的通信业务。展开更多
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
基金National Natural Science Foundation of China(No.51205217)
文摘By friction heating single point incremental forming,truncated square pyramid parts with different draw angles of a magnesium alloy AZ31 B were formed at room temperature.Metallurgical,tensile and micro-hardness tests were carried out to obtain the effects of wall angle on microstructure and mechanical properties. The results show that grain in side wall of the formed parts becomes refined significantly. Furthermore,with the increase of draw angle,grain size increases,but strength,hardness and plasticity decrease. In addition, surface roughness tests were performed on the formed surface to determine the influence of speed of forming tool. The results show that surface roughness has a little increase with the increase of tool rotational speed.
文摘In total, there are 12 systems, 60 point groups and 89 single forms in crystals and quasicrystals. Among them, 5 new systems, 28 new point groups and 42 new single forms belong to quasicrystals, while the other 7 systems, 32 point groups and 47 single forms belong to crystals. In this paper, the point groups and single forms of quasicrystals are deduced and drawn as stereographic projections by the rules of crystallographic point groups. These stereographic projections integrate the crystal and quasicrystal symmetry theories.
文摘This paper mainly deals with the point groups and single forms of octagonal quasicrystals and the description of one-dimensional quasilattice. The authors present a new sequence for describing the arrangement of quasiperiods in one-dimensional quasilattice. The first ten numbers of quasiperiods of this sequence are 1, 1, 2, 5, 12, 29, 70, 169, 408 and 985. The arrangement of quasiperiods in the first five steps are a, b, ab. babab and babababbabab. Seven p(?)nt groups and nine single forms for the octagonal system have been deduced, They are as follows: Point groups: 8.8m, 82, 8/m, 8/mmm, 8 and 82m; single forms: octagonal prism, dioctagonal prism. octagonal pyramid. dioctagonal pyramid. octagonal dipyramid, dioctagonal dipyramid, octagonal scalenohedron, dioctagonal scalenohedron and octagonal trapezohedron. Besides seven point groups and nine single forms for the dodecahegonal system have also been deduced.
基金Supported by National Natural Science Foundation of China(Grant No.51575091,51205052)Aeronautical Science Foundation of China(Grant No.20170250001)the Basic Science and Research Project of Chinese National University(Grant No.N160304008).
文摘As a type of multiconfiguration mechanism that can operate in an under-actuated state,metamorphic mechanisms were proposed more than two decades ago and attracted significant interest.Studies on structural synthesis of metamorphic mechanisms tend to focus more on metamorphic techniques and the structural synthesis of source mechanisms for metamorphic mechanisms.By designing different constraint architectures of metamorphic joints,multistructures can be obtained from the same source metamorphic mechanism.To determine the constraint architectures of metamorphic joints and their different assembly combinations,a kinematic status matrix and a corresponding constraint status matrix are constructed based on the metamorphic cyclogram of a source mechanism.According to the equivalent resistance gradient model and the constraint status matrix,an equivalent resistance matrix for the metamorphic joints is proposed.A structural synthesis matrix of the metamorphic mechanism is then obtained from the equivalent resistance matrix by deducing the constraint form vectors of the metamorphic joints.Furthermore,a kinematic diagram synthesis of the source metamorphic mechanism of a planar single-loop metamorphic mechanism is proposed,which is based on only the 14 one-or zero-degrees-of-freedom linkage groups.The entire structural design method of a metamorphic mechanism is based on the structural synthesis matrix and is presented as a systematic process.Finally,the proposed structural design approach is illustrated by two examples to verify its feasibility and practicality.This study provides an effective method for designing a practical multi-mobility and multiconfiguration planar single-loop metamorphic mechanism with a single actuator.
基金National Key Basic Research Development Program me of china(No.G2 0 0 0 0 672 0 5 -3 )
文摘Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material. The solidification microstructure in the sample was investigated. It was found that the solidification microstructure was greatly influenced by the crystallography orientation of the substrate and the local solidification conditions. When the angle between the preferred orientation of the single crystal and the direction of heat flow in the cladding layer is less than 30°, single crystal cladding layers were acquired. Otherwise the crystallography orientation of the cladding layer will deviate from the orientation of the substrate and the microstructure with polycrystalline appears. Meanwhile, even when the experiments were performed on the same preferred crystal surface, the solidification microstructures will be different distinctly resulting from the variation of the local solidification conditions. The secondary arms were degenerated and the primary arm spacing was about 10\|20 μm. Further investigation shows that the phases of the cladding layer are mainly made up of γ,γ′ , the flower\|like γ/γ′ eutectic and carbide. The morphology of γ′ was cubical and the size is less than 0.1μm. {
文摘This study performs single point incremental forming(SPIF)on two aluminum alloys(i.e.AA5754 and AA6061),and analyzes their post forming mechanical properties and microstructure evolution.The forming parameters namely wall angle(35°-55°),feed rate(1-4 m/min),spindle rotational speed(50-1000 r/min),and lubricant(grease and hydraulic oil)are varied to probe detailed processing effects.The pre-and post-SPIF mechanical properties and microstructures are characterized by conducting tensile tests and optical microscopy,respectively.It is shown that an increase in the wall angle,feed rate and rotational speed causes microscopic variations in the alloys such that the grains of AA5754 and the second phase particles of AA6061 elongate.As a result,the ultimate tensile strength of the formed parts is increased by 10%for AA5754 and by 8%for AA6061.And,the ductility of AA5754 is decreased from 22.9%to 12%and that of AA6061 is decreased from 16%to 10.7%.Regarding the lubricant effect,it is shown that the mechanical properties remain insensitive to the type of lubricant employed.These results indicate that SPIF processing modifies the microstructure of Al alloys in a way to enhance the strength at the cost of ductility.
文摘In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant, The soot particle is present as floccule with average size around 10 μm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.
基金This research was financially supported by the National High Technology Research and Development Program of China (No.2001AA337020)the Development Plan of State Key Fundamental Research of China (No. G2000067205-3)
文摘Straight plates, hollow columns, ear-like blade tips, twist plates withdirectional solidification microstructure made of Rene 95 superalloys were successfully fabricatedon Nickel-base superalloy and DD3 substrates, respectively. The processing conditions for productionof the parts with corresponding shapes were obtained. The fabrication precision was high and thecomponents were compact. The solidification microstructure of the parts was analyzed by opticalmicroscopy. The results show that the solidification microstructure is composed of columnardendrites, by epitaxial growth onto the directional solidification substrates. The crystallographyorientation of the parts was parallel to that of the substrates. The primary arm spacing was about10 mum, which is in the range of superfine dendrites, and the secondary arm was small or evendegenerated. It is concluded that the laser metal forming technique provides a method to manufacturedirectional solidification components.
文摘The influence of the size of pre-cut hole of blank on the formability of cylindrical hole flanging in single point incremental forming(SPIF) was studied. The flange is produced in four stages starting from 45° to 90° and employing aluminum as the test material. It is shown that the hole size has significant effects on the stress/strain distribution on the cylindrical flange. The magnitude of hoop strains increases and the flange thickness increases as the hole size increases. Likewise, the von Mises stress reduces with the increasing of hole size. Further, there is a threshold value of hole size(i.e., 80 mm) below which severe stresses occur, which lead to sheet fracturing thus failing the successful forming of cylindrical flange. Moreover, the formability reduces as the hole size is increased above the threshold size. Finally, it is concluded that 80 mm is the threshold size of hole for maximizing the formability of aluminum sheet in incremental hole flanging.
基金Project(2018YFB1105804)supported by the National Key R&D Program of ChinaProject(2020-TS-06)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China。
文摘A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.
文摘Rene95 powder and different substrates were selected to be conducted by the laser metal forming technique. It is found that the cladding layers with either columnar or equiaxed grains can be obtained under different solidification conditions. As the crystallography orientation of the substrate influences that of the cladding layers strongly. Multi-grain cladding layers can be obtained on the multi-grain substrate, while directional solidification columnar or even single crystal cladding layer can be achieved on the directional solidification or single crystal substrate.The mechanism of microstructure formation in the cladding layer was furtherly investigated according to the columnar/equiaxed transition profile. In addition,an ear-like single crystal component was manufactured using the DD3 single crystal as substrate. The yield strength at room temperature was examined on the heat-treated slice sample. The results indicate that the yield strength is about 97.9% of that of the powder metallurgical tensile sample while the plasticity overpasses 80% of the powder metallurgical tensile sample.
文摘针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移矩阵的单位膜约束和能量接收器的最小能量约束,以最大化信息传输速率为目标,联合优化了基站处的波束成形向量和智能反射面的反射波束成形向量。为解决非凸优化问题,提出了一种基于深度强化学习的深度确定性策略梯度(DDPG, deep deterministic policy gradient)算法。仿真结果表明,DDPG算法的平均奖励与学习率有关,在选取合适的学习率的条件下,DDPG算法能获得与传统优化算法相近的平均互信息,但运行时间明显低于传统的非凸优化算法,即使增加天线数和反射单元数,DDPG算法依然可以在较短的时间内收敛。这说明DDPG算法能有效地提高计算效率,更适合实时性要求较高的通信业务。