期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
动态全场光学相干断层扫描结合深度学习在肿瘤患者术中诊断的应用:一项乳腺癌患者的前瞻性队列研究
1
作者 张舒玮 杨滨 +7 位作者 杨后圃 赵进 张原媛 高元绪 Olivia Monteiro 张康 刘博 王殊 《Science Bulletin》 SCIE EI CAS CSCD 2024年第11期1748-1756,共9页
An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin(H&E) histology, such as frozen section, are time-,resource-, and l... An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin(H&E) histology, such as frozen section, are time-,resource-, and labor-intensive, and involve specimen-consuming concerns. Here, we report a near-real-time automated cancer diagnosis workflow for breast cancer that combines dynamic full-field optical coherence tomography(D-FFOCT), a label-free optical imaging method, and deep learning for bedside tumor diagnosis during surgery. To classify the benign and malignant breast tissues, we conducted a prospective cohort trial. In the modeling group(n = 182), D-FFOCT images were captured from April 26 to June 20, 2018, encompassing 48 benign lesions, 114 invasive ductal carcinoma(IDC), 10 invasive lobular carcinoma, 4 ductal carcinoma in situ(DCIS), and 6 rare tumors. Deep learning model was built up and fine-tuned in 10,357 D-FFOCT patches. Subsequently, from June 22 to August 17, 2018, independent tests(n = 42) were conducted on 10 benign lesions, 29 IDC, 1 DCIS, and 2 rare tumors. The model yielded excellent performance, with an accuracy of 97.62%, sensitivity of 96.88% and specificity of 100%;only one IDC was misclassified. Meanwhile, the acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. In the simulated intraoperative margin evaluation procedure, the time required for our novel workflow(approximately 3 min)was significantly shorter than that required for traditional procedures(approximately 30 min). These findings indicate that the combination of D-FFOCT and deep learning algorithms can streamline intraoperative cancer diagnosis independently of traditional pathology laboratory procedures. 展开更多
关键词 Cancer diagnosis Breast neoplasms Dynamic full-field optical coherence tomography Deep learning Image classification
原文传递
基于全场光学相干层析术的手术间快速诊断方法研究
2
作者 王云涛 高万荣 周亚文 《光电子.激光》 EI CAS CSCD 北大核心 2018年第6期685-690,共6页
手术间计算机辅助快速诊断对于临床实践具有重要的意义。本文首先分析了利用全场光学相干层析系统(Full-Field Optical Coherence Tomography,FFOCT)得到的光学断层图像的组织特征,以确定诊断要识别的目标。其次,利用数字图像处理技术,... 手术间计算机辅助快速诊断对于临床实践具有重要的意义。本文首先分析了利用全场光学相干层析系统(Full-Field Optical Coherence Tomography,FFOCT)得到的光学断层图像的组织特征,以确定诊断要识别的目标。其次,利用数字图像处理技术,提出了一种全场光学断层图像的计算机自动识别方法。最后,利用实验室搭建的FFOCT系统得到洋葱表皮细胞断层图像,做识别测试,并与其他类似的识别方法做了比较,验证了本文方法的精确性与识别速度,为实现FFOCT系统的手术间快速诊断提供了一种新途径。 展开更多
关键词 全场光学相干层析术(ffoct) 生物组织图像特征 数字图像处理技术 计算机自动识别方法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部