Two prototype pneumatic boxing gloves of different design were compared against conventional 10?oz (Std 10?oz) and 16?oz (Std 16?oz) gloves in terms of ability to reduce impact forces delivered to a target. One of the...Two prototype pneumatic boxing gloves of different design were compared against conventional 10?oz (Std 10?oz) and 16?oz (Std 16?oz) gloves in terms of ability to reduce impact forces delivered to a target. One of the pneumatic gloves (SBLI) contained a sealed air bladder inflated to a pressure of 2?kPa. The other (ARLI) incorporated a bladder that allowed release of air to the external environment upon contact with a target, followed by rapid air reuptake. Each glove was placed on to a mechanical fist and dropped 10 times on to an in-floor force plate from each of nine heights ranging from 1.0 to 5.0 metres, with the 5-metre drop generating a peak pre-impact glove velocity close to the reported maximum for elite boxers. Compared to the conventional gloves, the ARLI glove substantially reduced peak impact forces at all drop heights, with the reduction exceeding 30% even at the 5-metre level. The SBLI glove was as effective as the ARLI glove in reducing peak impact forces at drop heights of up to 2.5 metres, but its performance then progressively diminished, and at drop heights of 4.0, 4.5 and 5.0 metres it produced peak force readings similar to those recorded for the Std 10?oz and Std 16?oz gloves. The superiority of the ARLI glove was even more evident in relation to peak rate of force development, with reductions relative to the Std 10?oz glove being ~60% at drop heights up to 3.5 metres and still ~47% at 5 metres. Peak rate of force development for the SBLI glove exceeded that for the ARLI glove for all drop heights of 2.0 metres and above, and at 4.0, 4.5 and 5.0 metres it was higher than the readings for the Std 10 oz and 16?oz gloves. The protective effect of the ARLI glove was?associated with an increase in impact compliance and prolongation of contact time between glove and target. It is concluded that a pneumatic boxing glove that provides for air exchange with the external environment can greatly reduce impact magnitudes across the whole range of pre-impact glove velocities likely to be encountered in boxing, thereby mitigating risks associated with the sport. While acceptance of the gloves by the boxing community is uncertain, opportunity may exist for almost immediate uptake in modified boxing programs.展开更多
The impact damping capabilities of four different boxing gloves were assessed under two different conditions of target padding to determine whether target characteristics might influence previous conclusions concernin...The impact damping capabilities of four different boxing gloves were assessed under two different conditions of target padding to determine whether target characteristics might influence previous conclusions concerning potential for impact mitigation through novel glove design. A conventional 10?oz glove (Std 10?oz), a conventional 16?oz glove (Std 16?oz), a prototype pneumatic glove with a sealed bladder (SBLI) and a prototype pneumatic glove with a bladder allowing air exchange with the external environment (ARLI) were each dropped three times on to a force plate from six heights ranging from 2.5 to 5.0 metres. The force plate was covered by a 50 mm thick mat of EVA material and results obtained were compared with those of an earlier experiment involving use of a similar protocol but a 25 mm thick EVA force plate covering. The thicker mat greatly reduced peak impact forces for all gloves, with values for the Std 10?oz glove becoming much closer to those reported by other researchers for punches delivered by elite boxers to crash test manikins. Peak rates of force development were also substantially decreased. Protective effects provided by the ARLI glove relative to the Std 10?oz glove were diminished but still in the order of 17%?-?22% for peak impact force and 27%?-?49% for peak rate of force development across the range of drop heights. With the 50 mm mat thickness, the SBLI glove was as effective as the ARLI glove in reducing peak impact force, whereas this was not the case with the 25 mm mat. It was, however, always inferior to the ARLI glove in decreasing peak rate of force development. The ability of the ARLI glove to afford protection across a spectrum of impact conditions could yield important practical advantages.展开更多
Stroke represents a severe,widespread,and widely acknowledged health crisis on both national and international levels.It is one of the most prevalent life-threatening conditions.Despite impressive advances in treating...Stroke represents a severe,widespread,and widely acknowledged health crisis on both national and international levels.It is one of the most prevalent life-threatening conditions.Despite impressive advances in treating stroke,in addition to a need for effective patient care services,many sufferers still rely solely on physical interventions.The present paper describes and explains the use of a newly designed gadget for stroke survivors who cannot move their fingers.This is a sophisticated mobile device that enables stroke patients to regain their muscle memory and thus their ability to perform repetitive actions by continuing to tighten and stretch their muscles without the intervention of a physiotherapist.Gamification methodology is used to encourage patients to become involved in the process of rehabilitation.The device also has sensors that take information and transmit it to an app through an ESP32 connection.This enables physicians to view glove usage information remotely and keep track of an individual patient’s health.Communication between app and glove is facilitated by a broker in the Amazon Web Service IoT.With the robotic glove presented here,the recovery rate is found to be 90.23%over four weeks’duration,which represents a significant improvement compared with existing hospital-based rehabilitation techniques.展开更多
Ranging based on the reflection principle of ultrasonic wave propagating in the air has been widely used in modern life, such as car reversing radar, robot automatic obstacle avoidance etc. Aiming at the situation tha...Ranging based on the reflection principle of ultrasonic wave propagating in the air has been widely used in modern life, such as car reversing radar, robot automatic obstacle avoidance etc. Aiming at the situation that the blinds have no way to know whether there are obstacles or big safety risks in front of them when they are walking, this paper designed obstacle avoidance gloves for the blinds based on ultrasonic sensors. With Arduino Nano single chip microcomputer as main controller, combined with ultrasonic sensor module, bluetooth module and speaker module, the glove realized the function of obstacle detection and alarm. The main working principle is by using the ultrasonic sensors to transmit and receive ultrasonic, the time difference for transmitting and receiving to detect the distance of obstacles ahead. Besides, by means of voice module output audio signals with different frequency according to the obstacle distance, the blinds can judge the distance between them to the obstacles based on the sound with different frequencies they heard. In this way, they can make responses in advance to avoid the obstacles ahead and the happening of the risk.展开更多
This study was aimed at improved understanding of the mechanisms of previously reported protective effects of a pneumatic boxing glove. A Motion Capture System was used to obtain velocity data from four different boxi...This study was aimed at improved understanding of the mechanisms of previously reported protective effects of a pneumatic boxing glove. A Motion Capture System was used to obtain velocity data from four different boxing gloves dropped on to a force plate from nine heights ranging from 1 to 5 metres. Two gloves were of the conventional type but differed in mass. The other two were prototype pneumatic gloves. One of these (SBLI) had a sealed bladder while the other (ARLI) incorporated a port allowing air exchange with the external environment. The pneumatic gloves decelerated more slowly than the conventional gloves following impact and compressed through a greater absolute distance. Consequently, they took longer to reach zero velocity. As drop height increased, these trends became more pronounced for the ARLI glove than the SBLI glove. Increase in velocity during rebound was also slower for the pneumatic gloves. The ARLI glove had a lower coefficient of restitution than any of the other gloves at low to moderate drop heights but not at high drop heights. The SBLI glove had a higher coefficient of restitution than the other gloves at all drop heights from 2 metres upwards. This indicated that, overall, the ARLI glove was the most effective, and the SBLI glove the least effective, in dissipating the kinetic energy of impact through conversion to other energy forms. For all gloves at all drop heights, peak positive acceleration at the beginning of rebound was of lower absolute magnitude than peak negative acceleration at the end of compression. The influence of drop height on an index characterising this relationship differed between the conventional and pneumatic gloves, possibly reflecting structural changes to gloves as impact energy increased. The conventional and pneumatic gloves differed regarding temporal alignment between key kinematic and kinetic events, and there were some differences between the two pneumatic gloves in this respect. Nevertheless, peak glove deceleration correlated highly with peak impact force, not only for each glove individually but also when data for all gloves were combined. The findings confirmed the potential practical utility of the ARLI glove and identified air cushion thickness, glove compressibility and capacity for air release and subsequent reuptake as critical aspects of its design.展开更多
Progress is described regarding the development of a new electrotactile feedback glove designed for application to dexterous robot. The sensitivity of operator's finger against electrical stimulus pulse is conside...Progress is described regarding the development of a new electrotactile feedback glove designed for application to dexterous robot. The sensitivity of operator's finger against electrical stimulus pulse is considered. It is found that frequency, duty ratio, and voltage amplitude of electrical stimulus pulse determine the sensitivity of finger. The effects of materials, sizes, arrangements and shapes of electrodes on sensitivity of finger are analyzed. Finally, the tactile tele presence system is designed to experimentally confirm that the robot with electrotactile feedback glove can manipulate dexterous robotic multi fingered hand and identify and classify three sorts of objects.展开更多
Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping ob...Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.展开更多
Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously...Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor(AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of-1.5, a robust mechanical property(0.6 c N/dtex), and a fast train-resistance responsiveness(0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.展开更多
A wearable force-feedback glove is a promising way to enhance the immersive sensation when a user interacts with virtual objects in virtual reality scenarios.Design challenges for such a glove include allowing a large...A wearable force-feedback glove is a promising way to enhance the immersive sensation when a user interacts with virtual objects in virtual reality scenarios.Design challenges for such a glove include allowing a large fingertip workspace,providing a desired force sensation when simulating both free-and constrained-space interactions,and ensuring a lightweight structure.In this paper,we present a forcefeedback glove using a pneumatically actuated mechanism mounted on the dorsal side of the user’s hand.By means of a triple kinematic paired link with a curved sliding slot,a hybrid cam-linkage mechanism is proposed to transmit the resistance from the pneumatic piston rod to the fingertip.In order to obtain a large normal component of the feedback force on the user’s fingertip,the profile of the sliding slot was synthesized through an analysis of the force equilibrium on the triple kinematic paired link.A prototype five-fingered glove with a mass of 245 g was developed,and a wearable force-measurement system was constructed to permit the quantitative evaluation of the interaction performance in both free and constrained space.The experimental results confirm that the glove can achieve an average resistance of less than 0.1 N in free-space simulation and a maximum fingertip force of 4 N in constrained-space simulation.The experiment further confirms that this glove permits the finger to move freely to simulate typical grasping gestures.展开更多
文摘Two prototype pneumatic boxing gloves of different design were compared against conventional 10?oz (Std 10?oz) and 16?oz (Std 16?oz) gloves in terms of ability to reduce impact forces delivered to a target. One of the pneumatic gloves (SBLI) contained a sealed air bladder inflated to a pressure of 2?kPa. The other (ARLI) incorporated a bladder that allowed release of air to the external environment upon contact with a target, followed by rapid air reuptake. Each glove was placed on to a mechanical fist and dropped 10 times on to an in-floor force plate from each of nine heights ranging from 1.0 to 5.0 metres, with the 5-metre drop generating a peak pre-impact glove velocity close to the reported maximum for elite boxers. Compared to the conventional gloves, the ARLI glove substantially reduced peak impact forces at all drop heights, with the reduction exceeding 30% even at the 5-metre level. The SBLI glove was as effective as the ARLI glove in reducing peak impact forces at drop heights of up to 2.5 metres, but its performance then progressively diminished, and at drop heights of 4.0, 4.5 and 5.0 metres it produced peak force readings similar to those recorded for the Std 10?oz and Std 16?oz gloves. The superiority of the ARLI glove was even more evident in relation to peak rate of force development, with reductions relative to the Std 10?oz glove being ~60% at drop heights up to 3.5 metres and still ~47% at 5 metres. Peak rate of force development for the SBLI glove exceeded that for the ARLI glove for all drop heights of 2.0 metres and above, and at 4.0, 4.5 and 5.0 metres it was higher than the readings for the Std 10 oz and 16?oz gloves. The protective effect of the ARLI glove was?associated with an increase in impact compliance and prolongation of contact time between glove and target. It is concluded that a pneumatic boxing glove that provides for air exchange with the external environment can greatly reduce impact magnitudes across the whole range of pre-impact glove velocities likely to be encountered in boxing, thereby mitigating risks associated with the sport. While acceptance of the gloves by the boxing community is uncertain, opportunity may exist for almost immediate uptake in modified boxing programs.
文摘The impact damping capabilities of four different boxing gloves were assessed under two different conditions of target padding to determine whether target characteristics might influence previous conclusions concerning potential for impact mitigation through novel glove design. A conventional 10?oz glove (Std 10?oz), a conventional 16?oz glove (Std 16?oz), a prototype pneumatic glove with a sealed bladder (SBLI) and a prototype pneumatic glove with a bladder allowing air exchange with the external environment (ARLI) were each dropped three times on to a force plate from six heights ranging from 2.5 to 5.0 metres. The force plate was covered by a 50 mm thick mat of EVA material and results obtained were compared with those of an earlier experiment involving use of a similar protocol but a 25 mm thick EVA force plate covering. The thicker mat greatly reduced peak impact forces for all gloves, with values for the Std 10?oz glove becoming much closer to those reported by other researchers for punches delivered by elite boxers to crash test manikins. Peak rates of force development were also substantially decreased. Protective effects provided by the ARLI glove relative to the Std 10?oz glove were diminished but still in the order of 17%?-?22% for peak impact force and 27%?-?49% for peak rate of force development across the range of drop heights. With the 50 mm mat thickness, the SBLI glove was as effective as the ARLI glove in reducing peak impact force, whereas this was not the case with the 25 mm mat. It was, however, always inferior to the ARLI glove in decreasing peak rate of force development. The ability of the ARLI glove to afford protection across a spectrum of impact conditions could yield important practical advantages.
文摘Stroke represents a severe,widespread,and widely acknowledged health crisis on both national and international levels.It is one of the most prevalent life-threatening conditions.Despite impressive advances in treating stroke,in addition to a need for effective patient care services,many sufferers still rely solely on physical interventions.The present paper describes and explains the use of a newly designed gadget for stroke survivors who cannot move their fingers.This is a sophisticated mobile device that enables stroke patients to regain their muscle memory and thus their ability to perform repetitive actions by continuing to tighten and stretch their muscles without the intervention of a physiotherapist.Gamification methodology is used to encourage patients to become involved in the process of rehabilitation.The device also has sensors that take information and transmit it to an app through an ESP32 connection.This enables physicians to view glove usage information remotely and keep track of an individual patient’s health.Communication between app and glove is facilitated by a broker in the Amazon Web Service IoT.With the robotic glove presented here,the recovery rate is found to be 90.23%over four weeks’duration,which represents a significant improvement compared with existing hospital-based rehabilitation techniques.
文摘Ranging based on the reflection principle of ultrasonic wave propagating in the air has been widely used in modern life, such as car reversing radar, robot automatic obstacle avoidance etc. Aiming at the situation that the blinds have no way to know whether there are obstacles or big safety risks in front of them when they are walking, this paper designed obstacle avoidance gloves for the blinds based on ultrasonic sensors. With Arduino Nano single chip microcomputer as main controller, combined with ultrasonic sensor module, bluetooth module and speaker module, the glove realized the function of obstacle detection and alarm. The main working principle is by using the ultrasonic sensors to transmit and receive ultrasonic, the time difference for transmitting and receiving to detect the distance of obstacles ahead. Besides, by means of voice module output audio signals with different frequency according to the obstacle distance, the blinds can judge the distance between them to the obstacles based on the sound with different frequencies they heard. In this way, they can make responses in advance to avoid the obstacles ahead and the happening of the risk.
文摘This study was aimed at improved understanding of the mechanisms of previously reported protective effects of a pneumatic boxing glove. A Motion Capture System was used to obtain velocity data from four different boxing gloves dropped on to a force plate from nine heights ranging from 1 to 5 metres. Two gloves were of the conventional type but differed in mass. The other two were prototype pneumatic gloves. One of these (SBLI) had a sealed bladder while the other (ARLI) incorporated a port allowing air exchange with the external environment. The pneumatic gloves decelerated more slowly than the conventional gloves following impact and compressed through a greater absolute distance. Consequently, they took longer to reach zero velocity. As drop height increased, these trends became more pronounced for the ARLI glove than the SBLI glove. Increase in velocity during rebound was also slower for the pneumatic gloves. The ARLI glove had a lower coefficient of restitution than any of the other gloves at low to moderate drop heights but not at high drop heights. The SBLI glove had a higher coefficient of restitution than the other gloves at all drop heights from 2 metres upwards. This indicated that, overall, the ARLI glove was the most effective, and the SBLI glove the least effective, in dissipating the kinetic energy of impact through conversion to other energy forms. For all gloves at all drop heights, peak positive acceleration at the beginning of rebound was of lower absolute magnitude than peak negative acceleration at the end of compression. The influence of drop height on an index characterising this relationship differed between the conventional and pneumatic gloves, possibly reflecting structural changes to gloves as impact energy increased. The conventional and pneumatic gloves differed regarding temporal alignment between key kinematic and kinetic events, and there were some differences between the two pneumatic gloves in this respect. Nevertheless, peak glove deceleration correlated highly with peak impact force, not only for each glove individually but also when data for all gloves were combined. The findings confirmed the potential practical utility of the ARLI glove and identified air cushion thickness, glove compressibility and capacity for air release and subsequent reuptake as critical aspects of its design.
文摘Progress is described regarding the development of a new electrotactile feedback glove designed for application to dexterous robot. The sensitivity of operator's finger against electrical stimulus pulse is considered. It is found that frequency, duty ratio, and voltage amplitude of electrical stimulus pulse determine the sensitivity of finger. The effects of materials, sizes, arrangements and shapes of electrodes on sensitivity of finger are analyzed. Finally, the tactile tele presence system is designed to experimentally confirm that the robot with electrotactile feedback glove can manipulate dexterous robotic multi fingered hand and identify and classify three sorts of objects.
文摘Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.
基金supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C3003344 and NRF-2020R1A4A2002728)
文摘Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor(AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of-1.5, a robust mechanical property(0.6 c N/dtex), and a fast train-resistance responsiveness(0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.
基金the National Key Research and Development Program(2016YFB1001200)the National Natural Science Foundation of China(61572055 and 61633004).
文摘A wearable force-feedback glove is a promising way to enhance the immersive sensation when a user interacts with virtual objects in virtual reality scenarios.Design challenges for such a glove include allowing a large fingertip workspace,providing a desired force sensation when simulating both free-and constrained-space interactions,and ensuring a lightweight structure.In this paper,we present a forcefeedback glove using a pneumatically actuated mechanism mounted on the dorsal side of the user’s hand.By means of a triple kinematic paired link with a curved sliding slot,a hybrid cam-linkage mechanism is proposed to transmit the resistance from the pneumatic piston rod to the fingertip.In order to obtain a large normal component of the feedback force on the user’s fingertip,the profile of the sliding slot was synthesized through an analysis of the force equilibrium on the triple kinematic paired link.A prototype five-fingered glove with a mass of 245 g was developed,and a wearable force-measurement system was constructed to permit the quantitative evaluation of the interaction performance in both free and constrained space.The experimental results confirm that the glove can achieve an average resistance of less than 0.1 N in free-space simulation and a maximum fingertip force of 4 N in constrained-space simulation.The experiment further confirms that this glove permits the finger to move freely to simulate typical grasping gestures.