To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation...Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials.展开更多
[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to constru...[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to construct the full-length cDNA library by using Oligo-capping method. [Result] The constructed library has a total capacity of 6.5×10^6 recombinant clones, and a low proportion of clones without inserted frag- ments; the size of inserted fragments ranges between 0.3-5.0 kb, with strict classifi- cation and ideal consistency. Furthermore, the proportion of clones harboring long in- serted fragments (1.0-5.0 kb) is as high as 30%, achieving the standard for high- quality full-length cDNA library. [Conclusion] The full-length cDNA library of germinat- ing seeds of P. heterocycla was successfully constructed, which laid important foun- dation for the functional genomics research of bamboo plants.展开更多
Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock mas...Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position.展开更多
Sesame (Sesamue indicum L.) is one of the most important oilseed crops with high oil yield. Here, we described a simple and efficient method for constructing a normalized cDNA library from a high oil content cultiva...Sesame (Sesamue indicum L.) is one of the most important oilseed crops with high oil yield. Here, we described a simple and efficient method for constructing a normalized cDNA library from a high oil content cultivar of sesame Zhongzhi 14, during its oil accumulation stages. It combined switching mechanism at 5?end of RNA transcript (SMART) technique and duplex-specific nuclease (DSN) normalization methods. Double-stranded cDNAs were synthesized from mRNAs, processed by normalization and Sfi I restriction endonuclease, and finally the cDNAs were ligated to pDNR-LIB vector. The ligation mixture was transformed into Escherichia coli DH10B by electroporation. The capacity of the library was 1.0?06 clones in this library. Gel electrophoresis results indicated the fragments ranged from 700 to 2 000 bp, with the average size of 1 800 bp. Random picking clones showed that the recombination rate was 100%. The results showed that the cDNA library constructed successfully was a full-length library with high quality, and could be used to screen the genes related to development of oil synthesis.展开更多
This study was aimed to isolate ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) from tea plant [Camellia sinensis (L.) O. Kuntze]. In the study of transcriptional profiling of gene expression ...This study was aimed to isolate ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) from tea plant [Camellia sinensis (L.) O. Kuntze]. In the study of transcriptional profiling of gene expression from tea flower bud development stage by cDNA-AFLP (cDNA amplified fragment length polymorphism), we have isolated some transcript-derived fragments (TDFs) occurring in both the young and mature flower bud. One of them showed a high degree of similarity to RbcS. Based on the fragment, the full length of RbcS with 769-bp (EF011075) cDNA was obtained via rapid amplification of cDNA ends (RACE). It contained an open reading frame of 176 amino acids consisting of a chloroplast transit peptide with 52 amino acids and a mature protein of 124 amino acids. The amino acids sequence presented a high identity to those of other plant RbcS genes. It also contains three conserved domains and a protein kinase C phosphorylation site, one tyrosine kinase phosphorylation site and two N-myristoylation sites. Analysis by RT-PCR showed that the expression of RbcS in tea from high to low was leaf, young stem, young flower bud and mature flower bud, respectively. The isolation of the tea Rubisco small subunit gene establishes a good foundation for further study on the photosynthesis of tea plant.展开更多
This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit...This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.展开更多
Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying...Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying the pre-stress. Contrast tests were conducted between ordinary carbon fiber plates and a pre-stressed carbon fiber plate and between secondary loaded carbon fiber plates and a concrete beam strengthened with a secondary loaded carbon fiber plate. On this basis, we analyzed the failure pattern, the width of cracks and their distribution, the cracking load, the yield load, the limit load and the relation between load and deflec- tion. The results indicate that using pre-stressed carbon fiber plates to strengthen concrete beams is feasible and effective.展开更多
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here...The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.展开更多
The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method ...The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.展开更多
Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined...Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined members,materials of high strength can’t be fully utilized.Therefore,this study puts forward the idea of regulating and controlling string beam of pre-stressed glulam.By regulating and controlling the pre-stress,a part of the load borne by the wood is allocated to the pre-stressed tendon,which is equivalent to completing a redistribution of internal force,thus realizing the repeated utilization of the wood strength and the full utilization of the strength of the high-strength pre-stressed tendon.The bending experiments of 10 beams under 5 working conditions are carried out.The failure mode,bearing capacity and deformation of the beams are analyzed.The results show that 90%of beams are deformed under compression.The ultimate load of the regulated and controlled beam is obviously larger than that of the unregulated beam,and the ultimate load of the beam increases with the increase of the degree of regulation and control.Compared with that of the unregulated beams,the ultimate load of beams regulated by 7.5%-30%increases by 25.42%-65.08%,and the regulated and controlled effect is obvious.With the increase of the regulation and control amplitude of pre-stress,the stiffness of string beam of pre-stressed glulam increases.In addition,with the increase of the regulation and control amplitude,the compression height of the beam increases before the failure,and it reaches the state of full-section compression at the time of failure,giving full play to the compressive property of the glulam.At the end of the experiment,the constitutive relation which can reflect the anisotropy of the wood is established combined with the experimental data.The finite element analysis of the beam under 7 working conditions is carried out by using ABAQUS finite element program,and the influence of the regulation and control amplitude on the stress distribution and ultimate bearing capacity of the beam is discussed.展开更多
Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle ...Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle tissues. In addition, novel genes for further research could be identified in the library. In this study, we constructed a full-length cDNA library from porcine muscle tissue. The estimated average size of the cDNA inserts was 1 076 bp, and the cDNA fullness ratio was 86.2%. A total of 1 058 unique sequences with 342 contigs (32.3%) and 716 singleton (67.7%) expressed sequence tags (EST) were obtained by clustering and assembling. Meanwhile, 826 (78.1%) ESTs were categorized as known genes, and 232 (21.9%) ESTs were categorized as unknown genes. 65 novel porcine genes that exhibit no identity in the TIGR gene index of Sus scrofa and 124 full-length sequences with unknown functions were deposited in the dbEST division of GenBank (accession numbers: EU650784-EU650788, GE843306, GH228978-GH229100). The abundantly expressed genes in porcine muscle tissue were related to muscle fiber development, energy metabolism and protein synthesis. Gene ontology analysis showed that sequences expressed in porcine muscle tissue contained a high percentage of binding activity, catalytic activity, structural molecule activity and motor activity, which involved mainly in metabolic, cellular and developmental process, distributed mainly in intracellular region. The sequence data generated in this study would provide valuable information for identifying porcine genes expressed in muscle tissue and help to advance the study on the structure and function of genes in pigs.展开更多
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s...Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.展开更多
Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performan...Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic.展开更多
A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-de...A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.展开更多
In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sen...In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis.展开更多
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hy...Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.展开更多
Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test re...Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.展开更多
Yellowfin seabream Acanthopagrus latus is an important economic fish in Chinese coastal areas.Given its narrow distribution and overfishing,the genetic diversity of yellowfin seabream has been restricted for artificia...Yellowfin seabream Acanthopagrus latus is an important economic fish in Chinese coastal areas.Given its narrow distribution and overfishing,the genetic diversity of yellowfin seabream has been restricted for artificial breeding and reproduction.We performed full-length transcriptome sequencing and assembly of the genome of yellowfin seabream.A total of 68086 unigenes were obtained,with an N50 of 3391 bp on average length of 2933 bp.A total number of 50593 expressed sequence tags linked to simple sequence repeats(EST-SSR)were identified,among them dinucleotide repeats(40.6%)and AC/GT motifs(38.5%)were the most frequent.Of the 190 EST-SSRs for which PCR primer pairs were designed,150 primer pairs successfully amplified target loci and 15 SSRs showed high polymorphism.The alleles per locus ranged 6-50 on average of 25.3.The expected and observed heterozygosity varied from 0.632 to 0.969 and from 0.519 to 0.953,respectively.The polymorphic index content(PIC)values of each locus ranged 0.587-0.966 on average of 0.851.Among six yellowfin seabream population samples preliminarily tested for genetic diversity and differentiation,the Fangchenggang(FCG)population in Guangxi Province had the highest mean observed heterozygosity(H_(o))value(0.786),whereas the Zhangzhou(ZZ)population in Fujian Province had the lowest(0.678).The pairwise fixation index(Fst)values indicated significant population differentiation among six yellowfin seabream populations.This study provided evidence for the usefulness of the transcriptomic resource information and EST-SSR markers for natural resource conservation,population genetics,and breeding studies of yellowfin seabream in South China.展开更多
Zea nicaraguensis, a wild relative of cultivated maize (Zea mays subsp, mays), is considered to be a valuable germplasm to improve the waterlogging tolerance of cultivated maize. Use of reverse genetic-based gene cl...Zea nicaraguensis, a wild relative of cultivated maize (Zea mays subsp, mays), is considered to be a valuable germplasm to improve the waterlogging tolerance of cultivated maize. Use of reverse genetic-based gene cloning and function verifi- cation to discover waterlogging tolerance genes in Z. nicaraguensis is currently impractical, because little gene sequence information for Z. nicaraguensis is available in public databases. In this study, Z. nicaraguensis seedlings were subjected to simulated waterlogging stress and total RNAs were isolated from roots stressed and non-stressed controls. In total, 80 mol L-1 Illumina 100-bp paired-end reads were generated. De novo assembly of the reads generated 81 002 final non-re- dundant contigs, from which 5 261 full-length transcripts were identified. Among these full-length transcripts, 3 169 had at least one Gene Ontology (GO) annotation, 2 354 received cluster of orthologous groups (COG) terms, and 1 992 were assigned a Kyoto encyclopedia of genes and genomes (KEGG) Orthology number. These sequence data represent a valuable resource for identification of Z. nicaraguensis genes involved in waterlogging response.展开更多
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
基金supported by the National Natural Science Foundation of China(No.12134002)。
文摘Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials.
基金Supported by Specialized Fund for the Basic Research Operating Expenses Program of International Centre for Bamboo and Rattan(163201300812618-7)Special Fund for Research and Development of Forestry Nonprofit Industry(200704001)~~
文摘[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to construct the full-length cDNA library by using Oligo-capping method. [Result] The constructed library has a total capacity of 6.5×10^6 recombinant clones, and a low proportion of clones without inserted frag- ments; the size of inserted fragments ranges between 0.3-5.0 kb, with strict classifi- cation and ideal consistency. Furthermore, the proportion of clones harboring long in- serted fragments (1.0-5.0 kb) is as high as 30%, achieving the standard for high- quality full-length cDNA library. [Conclusion] The full-length cDNA library of germinat- ing seeds of P. heterocycla was successfully constructed, which laid important foun- dation for the functional genomics research of bamboo plants.
基金Project(51979281)supported by the National Natural Science Foundation of ChinaProject(ZR2018MEE050)supported by the Natural Science Foundation of Shandong Province,ChinaProject(18CX02079A)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position.
基金supported by the National Basic Research Program of China (2011cb109305)the Genetically Modified Organisms Breeding Major Projects, China (2009zx08004-002B)+1 种基金the Open Project Program of Key Laboratory for Oil Crops Biology, the Ministry of Agriculture, China (200703)the Foundation of Oil Crops Research Institute, Chinese Academy of Agricultural Sciences
文摘Sesame (Sesamue indicum L.) is one of the most important oilseed crops with high oil yield. Here, we described a simple and efficient method for constructing a normalized cDNA library from a high oil content cultivar of sesame Zhongzhi 14, during its oil accumulation stages. It combined switching mechanism at 5?end of RNA transcript (SMART) technique and duplex-specific nuclease (DSN) normalization methods. Double-stranded cDNAs were synthesized from mRNAs, processed by normalization and Sfi I restriction endonuclease, and finally the cDNAs were ligated to pDNR-LIB vector. The ligation mixture was transformed into Escherichia coli DH10B by electroporation. The capacity of the library was 1.0?06 clones in this library. Gel electrophoresis results indicated the fragments ranged from 700 to 2 000 bp, with the average size of 1 800 bp. Random picking clones showed that the recombination rate was 100%. The results showed that the cDNA library constructed successfully was a full-length library with high quality, and could be used to screen the genes related to development of oil synthesis.
基金supported by the National Natural Science Foundation of China (30871568)National Key Technology R&D Program of China(2008BAC0B03).
文摘This study was aimed to isolate ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) from tea plant [Camellia sinensis (L.) O. Kuntze]. In the study of transcriptional profiling of gene expression from tea flower bud development stage by cDNA-AFLP (cDNA amplified fragment length polymorphism), we have isolated some transcript-derived fragments (TDFs) occurring in both the young and mature flower bud. One of them showed a high degree of similarity to RbcS. Based on the fragment, the full length of RbcS with 769-bp (EF011075) cDNA was obtained via rapid amplification of cDNA ends (RACE). It contained an open reading frame of 176 amino acids consisting of a chloroplast transit peptide with 52 amino acids and a mature protein of 124 amino acids. The amino acids sequence presented a high identity to those of other plant RbcS genes. It also contains three conserved domains and a protein kinase C phosphorylation site, one tyrosine kinase phosphorylation site and two N-myristoylation sites. Analysis by RT-PCR showed that the expression of RbcS in tea from high to low was leaf, young stem, young flower bud and mature flower bud, respectively. The isolation of the tea Rubisco small subunit gene establishes a good foundation for further study on the photosynthesis of tea plant.
基金financially supported by the National Natural Science Foundation of China (No.42077244)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (No.Z020005)the Fundamental Research Funds for the Central Universities of Southeast University,China (No.2242021R10080)。
文摘This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.
文摘Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying the pre-stress. Contrast tests were conducted between ordinary carbon fiber plates and a pre-stressed carbon fiber plate and between secondary loaded carbon fiber plates and a concrete beam strengthened with a secondary loaded carbon fiber plate. On this basis, we analyzed the failure pattern, the width of cracks and their distribution, the cracking load, the yield load, the limit load and the relation between load and deflec- tion. The results indicate that using pre-stressed carbon fiber plates to strengthen concrete beams is feasible and effective.
基金Project (No.863-705-210) supported by the Hi-Tech Research and Development Program (863) of China
文摘The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.
文摘The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively.
基金In the process,this project was supported by the Fundamental Research Funds for the Central Universities(2572017DB02)Natural Science Foundation of Heilongjiang Province(JJ2019LH0696)by Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province in 2016(LBH-Q16011).
文摘Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined members,materials of high strength can’t be fully utilized.Therefore,this study puts forward the idea of regulating and controlling string beam of pre-stressed glulam.By regulating and controlling the pre-stress,a part of the load borne by the wood is allocated to the pre-stressed tendon,which is equivalent to completing a redistribution of internal force,thus realizing the repeated utilization of the wood strength and the full utilization of the strength of the high-strength pre-stressed tendon.The bending experiments of 10 beams under 5 working conditions are carried out.The failure mode,bearing capacity and deformation of the beams are analyzed.The results show that 90%of beams are deformed under compression.The ultimate load of the regulated and controlled beam is obviously larger than that of the unregulated beam,and the ultimate load of the beam increases with the increase of the degree of regulation and control.Compared with that of the unregulated beams,the ultimate load of beams regulated by 7.5%-30%increases by 25.42%-65.08%,and the regulated and controlled effect is obvious.With the increase of the regulation and control amplitude of pre-stress,the stiffness of string beam of pre-stressed glulam increases.In addition,with the increase of the regulation and control amplitude,the compression height of the beam increases before the failure,and it reaches the state of full-section compression at the time of failure,giving full play to the compressive property of the glulam.At the end of the experiment,the constitutive relation which can reflect the anisotropy of the wood is established combined with the experimental data.The finite element analysis of the beam under 7 working conditions is carried out by using ABAQUS finite element program,and the influence of the regulation and control amplitude on the stress distribution and ultimate bearing capacity of the beam is discussed.
基金supported by the National Basic Research Program of China(2007CB116201)
文摘Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle tissues. In addition, novel genes for further research could be identified in the library. In this study, we constructed a full-length cDNA library from porcine muscle tissue. The estimated average size of the cDNA inserts was 1 076 bp, and the cDNA fullness ratio was 86.2%. A total of 1 058 unique sequences with 342 contigs (32.3%) and 716 singleton (67.7%) expressed sequence tags (EST) were obtained by clustering and assembling. Meanwhile, 826 (78.1%) ESTs were categorized as known genes, and 232 (21.9%) ESTs were categorized as unknown genes. 65 novel porcine genes that exhibit no identity in the TIGR gene index of Sus scrofa and 124 full-length sequences with unknown functions were deposited in the dbEST division of GenBank (accession numbers: EU650784-EU650788, GE843306, GH228978-GH229100). The abundantly expressed genes in porcine muscle tissue were related to muscle fiber development, energy metabolism and protein synthesis. Gene ontology analysis showed that sequences expressed in porcine muscle tissue contained a high percentage of binding activity, catalytic activity, structural molecule activity and motor activity, which involved mainly in metabolic, cellular and developmental process, distributed mainly in intracellular region. The sequence data generated in this study would provide valuable information for identifying porcine genes expressed in muscle tissue and help to advance the study on the structure and function of genes in pigs.
基金Funded by National Natural Science Foundation of China(Nos.U1134008 and 51302090)the Fundamental Research Funds for the Central Universities(No.2015ZJ0005)
文摘Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.
文摘Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic.
文摘A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.
基金Supported by the National Natural Science Foundation of China(No.51505124)the Natural Science Foundation of Hebei Province(No.E2016209312)the Foster Fund Projects of North China University of Science and Technology(No.JP201505)
文摘In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis.
基金National Natural Science Foundation of China under Grant No.51178029 State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University under Grant No.SLDRCE08-MB-01
文摘Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.
文摘Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.
基金Supported by the National Key R&D Program of China (No. 2019YFD0901202)the Key-Area Research and Development Program of Guangdong Province (No. 2021B0202020002)+1 种基金the China Postdoctoral Science Foundation (No. 2021M693677)the Yellow Fin Bream Seed System Building Project (2021)
文摘Yellowfin seabream Acanthopagrus latus is an important economic fish in Chinese coastal areas.Given its narrow distribution and overfishing,the genetic diversity of yellowfin seabream has been restricted for artificial breeding and reproduction.We performed full-length transcriptome sequencing and assembly of the genome of yellowfin seabream.A total of 68086 unigenes were obtained,with an N50 of 3391 bp on average length of 2933 bp.A total number of 50593 expressed sequence tags linked to simple sequence repeats(EST-SSR)were identified,among them dinucleotide repeats(40.6%)and AC/GT motifs(38.5%)were the most frequent.Of the 190 EST-SSRs for which PCR primer pairs were designed,150 primer pairs successfully amplified target loci and 15 SSRs showed high polymorphism.The alleles per locus ranged 6-50 on average of 25.3.The expected and observed heterozygosity varied from 0.632 to 0.969 and from 0.519 to 0.953,respectively.The polymorphic index content(PIC)values of each locus ranged 0.587-0.966 on average of 0.851.Among six yellowfin seabream population samples preliminarily tested for genetic diversity and differentiation,the Fangchenggang(FCG)population in Guangxi Province had the highest mean observed heterozygosity(H_(o))value(0.786),whereas the Zhangzhou(ZZ)population in Fujian Province had the lowest(0.678).The pairwise fixation index(Fst)values indicated significant population differentiation among six yellowfin seabream populations.This study provided evidence for the usefulness of the transcriptomic resource information and EST-SSR markers for natural resource conservation,population genetics,and breeding studies of yellowfin seabream in South China.
基金supported by the Basic Research Program of China (973 Program, 2014CB138705)the National Natural Science Foundation of China (31371639)the Sichuan Youth Science and Technology Foundation of China (12ZB091)
文摘Zea nicaraguensis, a wild relative of cultivated maize (Zea mays subsp, mays), is considered to be a valuable germplasm to improve the waterlogging tolerance of cultivated maize. Use of reverse genetic-based gene cloning and function verifi- cation to discover waterlogging tolerance genes in Z. nicaraguensis is currently impractical, because little gene sequence information for Z. nicaraguensis is available in public databases. In this study, Z. nicaraguensis seedlings were subjected to simulated waterlogging stress and total RNAs were isolated from roots stressed and non-stressed controls. In total, 80 mol L-1 Illumina 100-bp paired-end reads were generated. De novo assembly of the reads generated 81 002 final non-re- dundant contigs, from which 5 261 full-length transcripts were identified. Among these full-length transcripts, 3 169 had at least one Gene Ontology (GO) annotation, 2 354 received cluster of orthologous groups (COG) terms, and 1 992 were assigned a Kyoto encyclopedia of genes and genomes (KEGG) Orthology number. These sequence data represent a valuable resource for identification of Z. nicaraguensis genes involved in waterlogging response.