To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with ...To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.展开更多
Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d...Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.展开更多
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme...To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.展开更多
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin...In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.展开更多
Introduction: The Six-Minute Walk Test (6MWT) is an inexpensive method to objectively evaluate physical capacity or limitation and stratify prognosis in patients with Heart Failure (HF). Since the clinical p...Introduction: The Six-Minute Walk Test (6MWT) is an inexpensive method to objectively evaluate physical capacity or limitation and stratify prognosis in patients with Heart Failure (HF). Since the clinical perception of symptoms may be adapted or compromised, regular evaluation from medical interviews often fails to determine functional classification. This study aimed to assess the correlation between New York Heart Association Functional Class (NYHA-FC) and the distance walked in the 6MWT. Methods: We conducted a cross-sectional observational study that included patients with HF with reduced ejection fraction followed up at an outpatient service of a teaching hospital, from August 2018 to April 2019. Patients in NYHA-FC I, II, or III were included. We compared NYHA-FC subjectively obtained during the consultation with the 6MWT performed after medical consultation, and the correlation between these two parameters was assessed. Results: The study included 70 patients with HF, 41 (58.6%) of whom were female. The mean age was 61.2 ± 12.7 years. The most prevalent etiologies were dilated idiopathic cardiomyopathy (35.7%) followed by ischemic cardiomyopathy (25.7%). The mean ejection fraction was 34.1% ± 9.8%. The average distance walked in the 6MWT by NYHA-FC I patients was 437.8 ± 95.8 meters, NYHA-FC II 360.1 ± 96.4, and NYHA-FC III 248.4 ± 98.3. Functional class measured by the 6MWT was different than that estimated by NYHA-FC in 34 patients (48.6%), 23 (32.9%) for a higher functional class and 11 (15.7%) for a lower one (p = 0.07). Pearson’s correlation coefficient between NYHA-FC and the 6MWT was -0.55. Conclusion: There was a moderate correlation between the subjective NYHA-FC and the 6MWT. The 6MWT revealed a different classification from NYHA-FC in almost half of the patients. Among those who presented discrepancies between methods, 6MWT reclassification towards a higher functional class was more common.展开更多
Background: Chronic heart failure is a public health problem worldwide. It has a high mortality rate and is accompanied by a decreased functional capacity and alteration of the quality of life. Objective: This st...Background: Chronic heart failure is a public health problem worldwide. It has a high mortality rate and is accompanied by a decreased functional capacity and alteration of the quality of life. Objective: This study aimed to assess the cardiovascular functional capacity of a group of patients suffering from heart failure using the 6-minute walk test (6 MWT). Methods: This was a cross-sectional study carried out in the cardiology unit of Douala’s general hospital for 4 months. We included all eligible patients aged 18 years or more who had stable chronic heart failure and gave informed consent. Those who had an acute coronary syndrome (≤1 month), tachycardia (HR ≥ 120 bpm), high blood pressure (SBP ≥ 180 mmHg and/or DBP ≥ 100 mmHg) and reduced mobility due to orthopaedic reasons were excluded. A 6 MWT was done according to the American Thoracic Society guidelines. The 6 MWT result was considered poor for - 450 m and good for >450 m. Results: We recruited a total of 81 patients (61.7% women) with a mean age of 65.9 ± 10.6 years. The most frequent risk factor for heart failure was high blood pressure (77.8%), alcohol consumption(69.1%) and a sedentary lifestyle (53.1%). The left ventricular ejection fraction was mostly preserved (42.0%) or mildly altered (46.9). The 6 MWT results were poor in 55.6% of cases, average in 19.8% of cases and good in only 24.7% of cases. More than half (59.3%) of the participants perceived the effort as being difficult. The cardiovascular functional capacity was significantly associated with age, heart failure stage and physical activity (p Conclusion: Most patients suffering from chronic stable heart failure in the general hospital of Douala have poor cardiovascular functional capacity.展开更多
In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled ...In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.展开更多
Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of ro...Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.展开更多
Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external ...Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties.展开更多
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b...Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.展开更多
Spalling is a typical brittle failure phenomenon of hard rock in deep caverns under high geostress.In this study,key issues are systematically studied concerning the spalling failure of deep hard rock caverns.First,th...Spalling is a typical brittle failure phenomenon of hard rock in deep caverns under high geostress.In this study,key issues are systematically studied concerning the spalling failure of deep hard rock caverns.First,the prismatic rock specimens with small thicknesses(i.e.width×thickness×height:20 mm×50 mm×100 mm)are employed in our tests which not only successfully simulate the spalling failure of hard rock in the laboratory but also obtain a reasonable spalling strength similar to that of the rock mass.Then,a series of spalling experiments is carried out to investigate the mechanism of spalling failure of deep hard rock caverns.Our results show that the intermediate principal stress,weak dynamic disturbances,and rock microstructure have significant effects on the spalling failure.The spalling strength is approximately(0.3–0.8)UCS,where UCS is the uniaxial compressive strength of the cylindrical rock sample with a diameter of around 50 mm.The spalling strength increases first and then decreases with increasing intermediate principal stress.Moreover,an empirical spalling strength criterion and a numerical method of spalling failure are proposed.This numerical method can not only simulate the spalling failure zone formed by tangential compressive stress concentration after excavation under different intermediate principal stresses,but also successfully simulate the failure transition from tensile mode to shear mode associated with confinement change in deep hard rock caverns.Furthermore,an acoustic emission-based early warning method using neural network is proposed to predict the spalling failure.Finally,a technical roadmap for preventing and controlling spalling failure of deep hard rock caverns is presented after summarizing the successful experiences in a typical engineering case.展开更多
Locked segments are recognized as a critical role that controls the stability of rock slopes but remain an unclear and challenging problem with respect to their role incorporated into the failure mechanism.In order to...Locked segments are recognized as a critical role that controls the stability of rock slopes but remain an unclear and challenging problem with respect to their role incorporated into the failure mechanism.In order to study the effect of the locked segments on the initial failure process of rockslides,thirty-six groups of locked segment specimens with three different lithologies were prepared,direct shear tests were carried out to obtain the accelerations caused by brittle failure of the locked segment specimens.Experiment results showed that the maximum accelerations caused by the brittle failure of locked segment specimens was 2.91 g in the horizontal direction,and 3.18 g in the vertical direction.We took the Wangjiayan rockslide in 2008 Wenchuan earthquake as an example,the critical balance condition of the sliding mass under combined effect of gravity and accelerations induced by brittle failure of locked segment was analyzed,which indicated that the initial failure process of the Wangjiayan rockslides was notably influenced by the existence of the locked segment.The departure acceleration and direction of the Wangjiayan rockslide were proposed.The study results can provide a new insight into the understanding of the initial failure mechanism of rockslides with locked segments.展开更多
Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we perform...Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we performed triaxial compression tests on different glutenites.The results indicate that failure modes of glutenite are complex due to the existence of gravel.Under different confining pressures,three failure modes were observed.The first failure mode,a tensile failure under uniaxial compression,produces multiple tortuous longitudinal cracks.In this failure mode,the interaction between gravels provides the lateral tensile stress for rock splitting.The second failure mode occurs under low and medium confining pressure and produces a crack band composed of micro-cracks around gravels.This failure mode conforms to the Mohr-Coulomb criterion and is generated by shear failure.In this failure mode,shear dilatancy and shear compaction may occur under different confining pressures to produce different crack band types.In the second failure mode,gravel-induced stress concentration produces masses of initial micro-cracks for shear cracking,and gravels deflect the fracture surfaces.As a result,the fracture is characterized by crack bands that are far broader than in fine-grained rocks.The third failure mode requires high confining pressure and produces disconnected cracks around gravels without apparent crack bands.In this failure mode,the gravel rarely breaks,indicating that the formation of these fractures is related to the deformation of the matrix.The third failure mode requires lower confining pressure in glutenite with weak cement and matrix support.Generally,unlike fine-grained rocks,the failure mode of glutenite is not only controlled by confining pressure but also by the gravel.The failure of glutenite is characterized by producing cracks around gravels.These cracks are produced by different mechanisms and distributed in different manners under different confining pressures to form different fracture patterns.Therefore,understanding the rock microstructure and formation stress state is essential in guiding glutenite reservoir development.展开更多
BACKGROUND: Acute liver failure(ALF) is an acute severe deterioration of liver function with high mortality. Early and accurate prognostic assessment of patients with ALF is critically important. Although the model fo...BACKGROUND: Acute liver failure(ALF) is an acute severe deterioration of liver function with high mortality. Early and accurate prognostic assessment of patients with ALF is critically important. Although the model for end-stage liver disease(MELD) scores and King’s College Hospital(KCH) criteria are well-accepted as predictive tools, their accuracy is unsatisfactory.The indocyanine green(ICG) clearance test(ICGR15, ICG retention rate at the 15 minutes) is a sensitive indicator of liver function. In this study, we investigated the efficacy of the ICGR15 for the short-term prognosis in patients with ALF. We compared the predictive value of ICGR15 with the MELD scores and KCH criteria.METHODS: Sixty-nine patients who had been diagnosed with ALF were recruited retrospectively. ICGR15 had been performed by ICG pulse spectrophotometry and relevant clinical and laboratory indices were analyzed within 24 hours of diagnosis.In addition, the MELD scores and KCH criteria were calculated.RESULTS: The three-month mortality of all patients was 47.83%.Age, serum total bilirubin and creatinine concentrations,international normalized ratio for prothrombin time, ICGR15,MELD scores and KCH criteria differed significantly between surviving and deceased patients. A positive correlation was observed between ICGR15 and MELD scores(r=0.328, P=0.006).The ICGR15-MELD model, Logit(P)=0.096×ICGR15+0.174 ×MELD score–9.346, was constructed by logistic regression analysis. The area under the receiver operating characteristic curve was 0.855. When set the cut-off point to-0.4684, the sensitivity was 87.90% and specificity, 72.20%. The area under the receiver operating characteristic curve of the ICGR15-MELD model(0.855) was significantly higher than that of the ICGR15(0.793), MELD scores(0.776) and KCH criteria(0.659).Based on this cut-off value, the patients were divided into two groups. The mortality was 74.36% in the first group(ICGR15-MELD≥-0.4686) and 13.33% in the second group(ICGR15-MELD<-0.4686), with a significant difference between the two groups(χ2=25.307, P=0.000).CONCLUSION: The ICGR15-MELD model is superior to the ICGR15, MELD scores, and KCH criteria in predicting the shortterm prognosis of patients with ALF.展开更多
Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censori...Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.展开更多
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t...For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.展开更多
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi...The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation.展开更多
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ...To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.展开更多
Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias t...Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51934003,52334004)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050014)。
文摘To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.
基金supported by Central Guiding Local Science and Technology Development Special Fund Project(No.ZYYD2023B02)the National Natural Science Foundation of China(Nos.52078432 and 52168066)the Scientific Research Project of China Railway First Survey and Design Institute Group Co.(No.20-06).
文摘Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.
基金supported by the National Key Research and Development Projects of China(No.2021YFB2600402)National Natural Science Foundation of China(Nos.52209148 and 52374119)+1 种基金the opening fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME023023)the opening fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(No.2023-SYSJJ-02)。
文摘To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.
基金supported by the Science and Technology Programs of Gansu Province,China(Nos.21JR1RA248,20JR10RA264)the Young Scholars Science Foundation of Lanzhou Jiaotong University,China(Nos.2020039,2020017)the Special Funds for Guiding Local Scientific and Technological Development by the Central Government,China(No.22ZY1QA005)。
文摘In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.
文摘Introduction: The Six-Minute Walk Test (6MWT) is an inexpensive method to objectively evaluate physical capacity or limitation and stratify prognosis in patients with Heart Failure (HF). Since the clinical perception of symptoms may be adapted or compromised, regular evaluation from medical interviews often fails to determine functional classification. This study aimed to assess the correlation between New York Heart Association Functional Class (NYHA-FC) and the distance walked in the 6MWT. Methods: We conducted a cross-sectional observational study that included patients with HF with reduced ejection fraction followed up at an outpatient service of a teaching hospital, from August 2018 to April 2019. Patients in NYHA-FC I, II, or III were included. We compared NYHA-FC subjectively obtained during the consultation with the 6MWT performed after medical consultation, and the correlation between these two parameters was assessed. Results: The study included 70 patients with HF, 41 (58.6%) of whom were female. The mean age was 61.2 ± 12.7 years. The most prevalent etiologies were dilated idiopathic cardiomyopathy (35.7%) followed by ischemic cardiomyopathy (25.7%). The mean ejection fraction was 34.1% ± 9.8%. The average distance walked in the 6MWT by NYHA-FC I patients was 437.8 ± 95.8 meters, NYHA-FC II 360.1 ± 96.4, and NYHA-FC III 248.4 ± 98.3. Functional class measured by the 6MWT was different than that estimated by NYHA-FC in 34 patients (48.6%), 23 (32.9%) for a higher functional class and 11 (15.7%) for a lower one (p = 0.07). Pearson’s correlation coefficient between NYHA-FC and the 6MWT was -0.55. Conclusion: There was a moderate correlation between the subjective NYHA-FC and the 6MWT. The 6MWT revealed a different classification from NYHA-FC in almost half of the patients. Among those who presented discrepancies between methods, 6MWT reclassification towards a higher functional class was more common.
文摘Background: Chronic heart failure is a public health problem worldwide. It has a high mortality rate and is accompanied by a decreased functional capacity and alteration of the quality of life. Objective: This study aimed to assess the cardiovascular functional capacity of a group of patients suffering from heart failure using the 6-minute walk test (6 MWT). Methods: This was a cross-sectional study carried out in the cardiology unit of Douala’s general hospital for 4 months. We included all eligible patients aged 18 years or more who had stable chronic heart failure and gave informed consent. Those who had an acute coronary syndrome (≤1 month), tachycardia (HR ≥ 120 bpm), high blood pressure (SBP ≥ 180 mmHg and/or DBP ≥ 100 mmHg) and reduced mobility due to orthopaedic reasons were excluded. A 6 MWT was done according to the American Thoracic Society guidelines. The 6 MWT result was considered poor for - 450 m and good for >450 m. Results: We recruited a total of 81 patients (61.7% women) with a mean age of 65.9 ± 10.6 years. The most frequent risk factor for heart failure was high blood pressure (77.8%), alcohol consumption(69.1%) and a sedentary lifestyle (53.1%). The left ventricular ejection fraction was mostly preserved (42.0%) or mildly altered (46.9). The 6 MWT results were poor in 55.6% of cases, average in 19.8% of cases and good in only 24.7% of cases. More than half (59.3%) of the participants perceived the effort as being difficult. The cardiovascular functional capacity was significantly associated with age, heart failure stage and physical activity (p Conclusion: Most patients suffering from chronic stable heart failure in the general hospital of Douala have poor cardiovascular functional capacity.
基金supported by the National Natural Science Foundation of China (Nos.50804046, 50490273 and 50774082)the Scientific Research Fund for Youths of CUMT (No. 0B080240)
文摘In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.
基金National Natural Science Foundation of China(No.50678063)
文摘Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProject(51474250)supported by the National Natural Science Foundation of ChinaProject(2015JJ3166)supported by the Natural Science Foundation of Hunan Province,China
文摘Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties.
基金the National Key Research and Development Program of China(Nos.2019YFE0118500 and 2019YFC1904304)National Natural Science Foundation of China(Nos.52104107 and U22A20598)Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.
基金The authors greatly gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant Nos.52169021 and 51869003)the Interdisciplinary Scientific Research Foundation of Guangxi University,China(Grant No.2022JCA004).
文摘Spalling is a typical brittle failure phenomenon of hard rock in deep caverns under high geostress.In this study,key issues are systematically studied concerning the spalling failure of deep hard rock caverns.First,the prismatic rock specimens with small thicknesses(i.e.width×thickness×height:20 mm×50 mm×100 mm)are employed in our tests which not only successfully simulate the spalling failure of hard rock in the laboratory but also obtain a reasonable spalling strength similar to that of the rock mass.Then,a series of spalling experiments is carried out to investigate the mechanism of spalling failure of deep hard rock caverns.Our results show that the intermediate principal stress,weak dynamic disturbances,and rock microstructure have significant effects on the spalling failure.The spalling strength is approximately(0.3–0.8)UCS,where UCS is the uniaxial compressive strength of the cylindrical rock sample with a diameter of around 50 mm.The spalling strength increases first and then decreases with increasing intermediate principal stress.Moreover,an empirical spalling strength criterion and a numerical method of spalling failure are proposed.This numerical method can not only simulate the spalling failure zone formed by tangential compressive stress concentration after excavation under different intermediate principal stresses,but also successfully simulate the failure transition from tensile mode to shear mode associated with confinement change in deep hard rock caverns.Furthermore,an acoustic emission-based early warning method using neural network is proposed to predict the spalling failure.Finally,a technical roadmap for preventing and controlling spalling failure of deep hard rock caverns is presented after summarizing the successful experiences in a typical engineering case.
基金supported by the National Natural Science Foundation of China (Grant No. 41672295)
文摘Locked segments are recognized as a critical role that controls the stability of rock slopes but remain an unclear and challenging problem with respect to their role incorporated into the failure mechanism.In order to study the effect of the locked segments on the initial failure process of rockslides,thirty-six groups of locked segment specimens with three different lithologies were prepared,direct shear tests were carried out to obtain the accelerations caused by brittle failure of the locked segment specimens.Experiment results showed that the maximum accelerations caused by the brittle failure of locked segment specimens was 2.91 g in the horizontal direction,and 3.18 g in the vertical direction.We took the Wangjiayan rockslide in 2008 Wenchuan earthquake as an example,the critical balance condition of the sliding mass under combined effect of gravity and accelerations induced by brittle failure of locked segment was analyzed,which indicated that the initial failure process of the Wangjiayan rockslides was notably influenced by the existence of the locked segment.The departure acceleration and direction of the Wangjiayan rockslide were proposed.The study results can provide a new insight into the understanding of the initial failure mechanism of rockslides with locked segments.
基金supported by the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01)Natural Science Youth Project of university scientific research plan in Xinjiang(XJEDU2021Y053).
文摘Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we performed triaxial compression tests on different glutenites.The results indicate that failure modes of glutenite are complex due to the existence of gravel.Under different confining pressures,three failure modes were observed.The first failure mode,a tensile failure under uniaxial compression,produces multiple tortuous longitudinal cracks.In this failure mode,the interaction between gravels provides the lateral tensile stress for rock splitting.The second failure mode occurs under low and medium confining pressure and produces a crack band composed of micro-cracks around gravels.This failure mode conforms to the Mohr-Coulomb criterion and is generated by shear failure.In this failure mode,shear dilatancy and shear compaction may occur under different confining pressures to produce different crack band types.In the second failure mode,gravel-induced stress concentration produces masses of initial micro-cracks for shear cracking,and gravels deflect the fracture surfaces.As a result,the fracture is characterized by crack bands that are far broader than in fine-grained rocks.The third failure mode requires high confining pressure and produces disconnected cracks around gravels without apparent crack bands.In this failure mode,the gravel rarely breaks,indicating that the formation of these fractures is related to the deformation of the matrix.The third failure mode requires lower confining pressure in glutenite with weak cement and matrix support.Generally,unlike fine-grained rocks,the failure mode of glutenite is not only controlled by confining pressure but also by the gravel.The failure of glutenite is characterized by producing cracks around gravels.These cracks are produced by different mechanisms and distributed in different manners under different confining pressures to form different fracture patterns.Therefore,understanding the rock microstructure and formation stress state is essential in guiding glutenite reservoir development.
基金supported by a grant from the Foundation of the Ministry of Health,China(2008ZX1005)
文摘BACKGROUND: Acute liver failure(ALF) is an acute severe deterioration of liver function with high mortality. Early and accurate prognostic assessment of patients with ALF is critically important. Although the model for end-stage liver disease(MELD) scores and King’s College Hospital(KCH) criteria are well-accepted as predictive tools, their accuracy is unsatisfactory.The indocyanine green(ICG) clearance test(ICGR15, ICG retention rate at the 15 minutes) is a sensitive indicator of liver function. In this study, we investigated the efficacy of the ICGR15 for the short-term prognosis in patients with ALF. We compared the predictive value of ICGR15 with the MELD scores and KCH criteria.METHODS: Sixty-nine patients who had been diagnosed with ALF were recruited retrospectively. ICGR15 had been performed by ICG pulse spectrophotometry and relevant clinical and laboratory indices were analyzed within 24 hours of diagnosis.In addition, the MELD scores and KCH criteria were calculated.RESULTS: The three-month mortality of all patients was 47.83%.Age, serum total bilirubin and creatinine concentrations,international normalized ratio for prothrombin time, ICGR15,MELD scores and KCH criteria differed significantly between surviving and deceased patients. A positive correlation was observed between ICGR15 and MELD scores(r=0.328, P=0.006).The ICGR15-MELD model, Logit(P)=0.096×ICGR15+0.174 ×MELD score–9.346, was constructed by logistic regression analysis. The area under the receiver operating characteristic curve was 0.855. When set the cut-off point to-0.4684, the sensitivity was 87.90% and specificity, 72.20%. The area under the receiver operating characteristic curve of the ICGR15-MELD model(0.855) was significantly higher than that of the ICGR15(0.793), MELD scores(0.776) and KCH criteria(0.659).Based on this cut-off value, the patients were divided into two groups. The mortality was 74.36% in the first group(ICGR15-MELD≥-0.4686) and 13.33% in the second group(ICGR15-MELD<-0.4686), with a significant difference between the two groups(χ2=25.307, P=0.000).CONCLUSION: The ICGR15-MELD model is superior to the ICGR15, MELD scores, and KCH criteria in predicting the shortterm prognosis of patients with ALF.
基金supported by Sustentation Program of National Ministries and Commissions of China (Grant No. 203020102)
文摘Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.
基金supported by China Scholarship Council and GRC/MIRARCO-Mining Innovation of Laurentian University, Canada
文摘For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.
基金supported by National Key R&D Program of China(2018YFC1508503)
文摘The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation.
基金supported by the National Key Research and Development Plan of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.51874311)the Natural Science Foundation of China(No.51904306)。
文摘To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.
基金Project(51508575)supported by the National Natural Science Foundation of ChinaProject(2011CB013802)supported by the National Basic Research Program of China+1 种基金Projects(2014M560652,2016T90764)supported by the China Postdoctoral Science FoundationProject(2015RS4006)supported by the Innovative Talents of Science and Technology Plan of Hunan Province,China
文摘Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.