期刊文献+
共找到53,336篇文章
< 1 2 250 >
每页显示 20 50 100
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
1
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
2
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Seasonal Characteristics of Forecasting Uncertainties in Surface PM_(2.5)Concentration Associated with Forecast Lead Time over the Beijing-Tianjin-Hebei Region
3
作者 Qiuyan DU Chun ZHAO +6 位作者 Jiawang FENG Zining YANG Jiamin XU Jun GU Mingshuai ZHANG Mingyue XU Shengfu LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期801-816,共16页
Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological foreca... Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation. 展开更多
关键词 PM_(2.5) forecasting uncertainties forecast lead time meteorological fields Beijing-Tianjin-Hebei region
下载PDF
Metagenomic Insight Reveals the Microbial Structure and Function of the Full-Scale Coking Wastewater Treatment System:Gene-Based Nitrogen Removal
4
作者 Jiaying Ma Fan Wang +4 位作者 Haifeng Fan Enchao Li Huaqiang Chu Xuefei Zhou Yalei Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第5期76-89,共14页
Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still ... Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still lacking.A five month survey of four sequential bioreactors,anoxic 1/oxic 1/anoxic 2/oxic 2(A1/O1/A2/O2),was carried out in a full-scale CWW treatment system in China to elucidate operational performance and microbial ecology.The results showed that A1/O1/A2/O2 had excellent and stable performance for nitrogen removal.Both total nitrogen(TN;(17.38±6.89)mgL1)and ammonium-nitrogen(NH4 t-N;(2.10±1.34)mg·L^(-1))in the final biological effluent satisfied the Chinese national standards for CWW.Integrated analysis of 16S ribosome RNA(rRNA)sequencing and metagenomic sequencing showed that the bacterial communities and metagenomic function profiles of A1 and O1 shared similar functional structures,while those of A2 significantly varied from those of other bioreactors(p<0.05).The results indicated that microbial activity was strongly connected with activated sludge function.Nitrosospira,Nitrosomonas,and SM1A02 were responsible for nitrification during the primary anoxic-oxic(AO)stage and Azoarcus and Thauera acted as important denitrifiers in A2.Nitrogen cycling-related enzymes and genes work in the A1/O1/A2/O2 system.Moreover,the hao genes catalyzing hydroxylamine dehydrogenase(EC 1.7.2.6)and the napA and napB genes catalyzing nitrate reductase(EC 1.9.6.1)played important roles in the nitrification and denitrification processes in the primary and secondary AO stages,respectively.The mixed liquor suspended solids(MLSS)/total solids(TS),TN removal rate(RR),total organic carbon(TOC)(RR),and NH_(4)^(+)t-N(RR)were the most important environmental factors for regulating the structure of core bacterial genera and nitrogen-cycling genes.Proteobacteria were the potential main participants in nitrogen metabolism in the A1/O1/A2/O2 system for CWW treatment.This study provides an original and comprehensive understanding of the microbial community and functions at the gene level,which is crucial for the efficient and stable operation of the full-scale biological process for CWW treatment. 展开更多
关键词 Coking wastewater full-scale Microbial community Metagenomic sequencing Nitrogen-cycling genes Environmental factor
下载PDF
Resistance of full-scale beams against close-in explosions.Numerical modeling and field tests
5
作者 A.Prado A.Alañón +5 位作者 R.Castedo A.P.Santos L.M.López M.Chiquito M.Bermejo C.Oggeri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期35-47,共13页
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ... This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed. 展开更多
关键词 Blast test Numerical simulation LS-DYNA Concrete model Mesh effect full-scale beams
下载PDF
Promising Results Predict Role for Artificial Intelligence in Weather Forecasting
6
作者 Mitch Leslie 《Engineering》 SCIE EI CAS CSCD 2024年第8期10-12,共3页
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,... Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models. 展开更多
关键词 forecasting humidity WEATHER
下载PDF
Full-Scale Isogeometric Topology Optimization of Cellular Structures Based on Kirchhoff-Love Shells
7
作者 Mingzhe Huang Mi Xiao +3 位作者 Liang Gao Mian Zhou Wei Sha Jinhao Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2479-2505,共27页
Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method ba... Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness. 展开更多
关键词 Cellular thin-shell structures isogeometric analysis full-scale topology optimization Kirchhoff–Love shells
下载PDF
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
8
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
Better use of experience from other reservoirs for accurate production forecasting by learn-to-learn method
9
作者 Hao-Chen Wang Kai Zhang +7 位作者 Nancy Chen Wen-Sheng Zhou Chen Liu Ji-Fu Wang Li-Ming Zhang Zhi-Gang Yu Shi-Ti Cui Mei-Chun Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期716-728,共13页
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie... To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods. 展开更多
关键词 Production forecasting Multiple patterns Few-shot learning Transfer learning
下载PDF
Comparison among the UECM Model, and the Composite Model in Forecasting Malaysian Imports
10
作者 Mohamed A. H. Milad Hanan Moh. B. Duzan 《Open Journal of Statistics》 2024年第2期163-178,共16页
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f... For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting. 展开更多
关键词 Composite Model UECM ARIMA forecasting MALAYSIA
下载PDF
Generalized load graphical forecasting method based on modal decomposition
11
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 Load forecasting Generalized load Image processing DenseNet Modal decomposition
下载PDF
CALTM:A Context-Aware Long-Term Time-Series Forecasting Model
12
作者 Canghong Jin Jiapeng Chen +3 位作者 Shuyu Wu Hao Wu Shuoping Wang Jing Ying 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期873-891,共19页
Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approache... Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series forecasting.However,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term forecastings.Consequently,the effectiveness of existing methods diminishes in such scenarios.Therefore,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic flow.Our model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final forecasting.Experimental results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios. 展开更多
关键词 Traffic volume forecasting scene matching multi module fusion
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
13
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
Behavior of transporting pipeline sections without and with hydrogen exposure based on full-scale tests
14
作者 Nóra Nagy János Lukács 《China Welding》 CAS 2024年第3期14-24,共11页
Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on... Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen. 展开更多
关键词 gas transporting pipeline full-scale pipeline test complex loading condition hydrogen exposure safety factor
下载PDF
Assessment of ECMWF’s Precipitation Forecasting Performance for China from 2017 to 2022
15
作者 PAN Liu-jie ZHANG Hong-fang +2 位作者 LIANG Mian LIU Jia-huimin DAI Chang-ming 《Journal of Tropical Meteorology》 SCIE 2024年第3期257-274,共18页
This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-R... This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-Range Weather Forecasts(ECMWF)model for China from 2017 to 2022.The main conclusions are as follows.The precipitation forecast capability of the ECMWF model for China has gradually improved from 2017 to 2022.Various scores such as bias,equitable threat score(ETS),and Fractions Skill Score(FSS)showed improvements for different categories of precipitation.The bias of light rain forecasts overall adjusted towards smaller values,and the increase in forecast scores was greater in the warm season than in the cold season.The ETS for torrential rain more intense categories significantly increased,although there were large fluctuations in bias across different months.The model exhibited higher precipitation bias in most areas of North China,indicating overprediction,while it showed lower bias in South China,indicating underprediction.The ETSs indicate that the model performed better in forecasting precipitation in the northeastern part of China without the influence of climatic background conditions.Comparison of the differences between the first period and the second period of the forecast shows that the precipitation amplitude in the ECMWF forecast shifted from slight underestimation to overestimation compared to that of CMPAS05,reducing the likelihood of missing extreme precipitation events.The improvement in ETS is mainly due to the reduction in bias and false alarm rates and,more importantly,an increase in the hit rate.From 2017 to 2022,the area coverage error of model precipitation forecast relative to observations showed a decreasing trend at different scales,while the FSS showed an increasing trend,with the highest FSS observed in 2021.The ETS followed a parabolic trend with increasing neighborhood radius,with the better ETS neighborhood radius generally being larger for moderate rain and heavy rain compared with light rain and torrential rain events. 展开更多
关键词 ECMWF forecasting verification neighborhood verification FSS
下载PDF
Weather-Driven Solar Power Forecasting Using D-Informer:Enhancing Predictions with Climate Variables
16
作者 Chenglian Ma Rui Han +2 位作者 Zhao An Tianyu Hu Meizhu Jin 《Energy Engineering》 EI 2024年第5期1245-1261,共17页
Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic... Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic(PV)power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data.To overcome these challenges,this research presents a cutting-edge,multi-stage forecasting method called D-Informer.This method skillfully merges the differential transformation algorithm with the Informer model,leveraging a detailed array of meteorological variables and historical PV power generation records.The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,achieving on average a 67.64%reduction in mean squared error(MSE),a 49.58%decrease in mean absolute error(MAE),and a 43.43%reduction in root mean square error(RMSE).Moreover,it attained an R2 value as high as 0.9917 during the winter season,highlighting its precision and dependability.This significant advancement can be primarily attributed to the incorporation of a multi-head self-attention mechanism,which greatly enhances the model’s ability to identify complex interactions among diverse input variables,and the inclusion of weather variables,enriching the model’s input data and strengthening its predictive accuracy in time series analysis.Additionally,the experimental results confirm the effectiveness of the proposed approach. 展开更多
关键词 Power forecasting deep learning weather-driven solar power
下载PDF
Forecasting of surface current velocities using ensemble machine learning algorithms for the Guangdong−Hong Kong−Macao Greater Bay area based on the high frequency radar data
17
作者 Lei Ren Lingna Yang +4 位作者 Yaqi Wang Peng Yao Jun Wei Fan Yang Fearghal O’Donncha 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第10期1-15,共15页
Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and... Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and decision support for multiple practices such as search and rescue,disaster avoidance and remediation,and offshore construction.This research established a framework to generate short-term surface current forecasts based on ensemble machine learning trained on high frequency radar observation.Results indicate that an ensemble algorithm that used random forests to filter forecasting features by weighting them,and then used the AdaBoost method to forecast can significantly reduce the model training time,while ensuring the model forecasting effectiveness,with great economic benefits.Model accuracy is a function of surface current variability and the forecasting horizon.In order to improve the forecasting capability and accuracy of the model,the model structure of the ensemble algorithm was optimized,and the random forest algorithm was used to dynamically select model features.The results show that the error variation of the optimized surface current forecasting model has a more regular error variation,and the importance of the features varies with the forecasting time-step.At ten-step ahead forecasting horizon the model reported root mean square error,mean absolute error,and correlation coefficient by 2.84 cm/s,2.02 cm/s,and 0.96,respectively.The model error is affected by factors such as topography,boundaries,and geometric accuracy of the observation system.This paper demonstrates the potential of ensemble-based machine learning algorithm to improve forecasting of ocean currents. 展开更多
关键词 forecasting surface currents ensemble machine learning high frequency radar random forest AdaBoost
下载PDF
Investigating Periodic Dependencies to Improve Short-Term Load Forecasting
18
作者 Jialin Yu Xiaodi Zhang +1 位作者 Qi Zhong Jian Feng 《Energy Engineering》 EI 2024年第3期789-806,共18页
With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit p... With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers. 展开更多
关键词 Load forecasting TRANSFORMER attention mechanism power grid
下载PDF
Dynamic Forecasting of Traffic Event Duration in Istanbul:A Classification Approach with Real-Time Data Integration
19
作者 Mesut Ulu Yusuf Sait Türkan +2 位作者 Kenan Menguc Ersin Namlı Tarık Kucukdeniz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2259-2281,共23页
Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,re... Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,resulting in long waiting times,high carbon emissions,and other undesirable situations.It is vital to estimate incident response times quickly and accurately after traffic incidents occur for the success of incident-related planning and response activities.This study presents a model for forecasting the traffic incident duration of traffic events with high precision.The proposed model goes through a 4-stage process using various features to predict the duration of four different traffic events and presents a feature reduction approach to enable real-time data collection and prediction.In the first stage,the dataset consisting of 24,431 data points and 75 variables is prepared by data collection,merging,missing data processing and data cleaning.In the second stage,models such as Decision Trees(DT),K-Nearest Neighbour(KNN),Random Forest(RF)and Support Vector Machines(SVM)are used and hyperparameter optimisation is performed with GridSearchCV.In the third stage,feature selection and reduction are performed and real-time data are used.In the last stage,model performance with 14 variables is evaluated with metrics such as accuracy,precision,recall,F1-score,MCC,confusion matrix and SHAP.The RF model outperforms other models with an accuracy of 98.5%.The study’s prediction results demonstrate that the proposed dynamic prediction model can achieve a high level of success. 展开更多
关键词 Traffic event duration forecasting machine learning feature reduction shapley additive explanations(SHAP)
下载PDF
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
20
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部