期刊文献+
共找到150,510篇文章
< 1 2 250 >
每页显示 20 50 100
Behavior of transporting pipeline sections without and with hydrogen exposure based on full-scale tests
1
作者 Nóra Nagy János Lukács 《China Welding》 CAS 2024年第3期14-24,共11页
Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on... Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen. 展开更多
关键词 gas transporting pipeline full-scale pipeline test complex loading condition hydrogen exposure safety factor
下载PDF
Metagenomic Insight Reveals the Microbial Structure and Function of the Full-Scale Coking Wastewater Treatment System:Gene-Based Nitrogen Removal
2
作者 Jiaying Ma Fan Wang +4 位作者 Haifeng Fan Enchao Li Huaqiang Chu Xuefei Zhou Yalei Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第5期76-89,共14页
Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still ... Microbial communities play crucial roles in pollutant removal and system stability in biological systems for coking wastewater(CWW)treatment,but a comprehensive understanding of their structure and functions is still lacking.A five month survey of four sequential bioreactors,anoxic 1/oxic 1/anoxic 2/oxic 2(A1/O1/A2/O2),was carried out in a full-scale CWW treatment system in China to elucidate operational performance and microbial ecology.The results showed that A1/O1/A2/O2 had excellent and stable performance for nitrogen removal.Both total nitrogen(TN;(17.38±6.89)mgL1)and ammonium-nitrogen(NH4 t-N;(2.10±1.34)mg·L^(-1))in the final biological effluent satisfied the Chinese national standards for CWW.Integrated analysis of 16S ribosome RNA(rRNA)sequencing and metagenomic sequencing showed that the bacterial communities and metagenomic function profiles of A1 and O1 shared similar functional structures,while those of A2 significantly varied from those of other bioreactors(p<0.05).The results indicated that microbial activity was strongly connected with activated sludge function.Nitrosospira,Nitrosomonas,and SM1A02 were responsible for nitrification during the primary anoxic-oxic(AO)stage and Azoarcus and Thauera acted as important denitrifiers in A2.Nitrogen cycling-related enzymes and genes work in the A1/O1/A2/O2 system.Moreover,the hao genes catalyzing hydroxylamine dehydrogenase(EC 1.7.2.6)and the napA and napB genes catalyzing nitrate reductase(EC 1.9.6.1)played important roles in the nitrification and denitrification processes in the primary and secondary AO stages,respectively.The mixed liquor suspended solids(MLSS)/total solids(TS),TN removal rate(RR),total organic carbon(TOC)(RR),and NH_(4)^(+)t-N(RR)were the most important environmental factors for regulating the structure of core bacterial genera and nitrogen-cycling genes.Proteobacteria were the potential main participants in nitrogen metabolism in the A1/O1/A2/O2 system for CWW treatment.This study provides an original and comprehensive understanding of the microbial community and functions at the gene level,which is crucial for the efficient and stable operation of the full-scale biological process for CWW treatment. 展开更多
关键词 Coking wastewater full-scale Microbial community Metagenomic sequencing Nitrogen-cycling genes Environmental factor
下载PDF
Resistance of full-scale beams against close-in explosions.Numerical modeling and field tests
3
作者 A.Prado A.Alañón +5 位作者 R.Castedo A.P.Santos L.M.López M.Chiquito M.Bermejo C.Oggeri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期35-47,共13页
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ... This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed. 展开更多
关键词 Blast test Numerical simulation LS-DYNA Concrete model Mesh effect full-scale beams
下载PDF
Loading System for Full-Scale Heavy-Duty Support Node Test with Multi-Directional Loading Requirements 被引量:3
4
作者 王玉银 龚超 +1 位作者 张素梅 郭海山 《Transactions of Tianjin University》 EI CAS 2011年第3期166-174,共9页
This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy... This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments. 展开更多
关键词 loading system self-balanced design multi-directional loading heavy-duty node
下载PDF
Full-Scale Isogeometric Topology Optimization of Cellular Structures Based on Kirchhoff-Love Shells
5
作者 Mingzhe Huang Mi Xiao +3 位作者 Liang Gao Mian Zhou Wei Sha Jinhao Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2479-2505,共27页
Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method ba... Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness. 展开更多
关键词 Cellular thin-shell structures isogeometric analysis full-scale topology optimization Kirchhoff–Love shells
下载PDF
Full-scale modeling of chemical experiments
6
作者 Junfeng Wang Guohui Li 《Smart Molecules》 2024年第1期1-8,共8页
Computational chemistry methods are playing an increasingly pivotal role in chemical experiments.From quantum chemistry simulations to finite element simulations,researchers can always find an appropriate simulation m... Computational chemistry methods are playing an increasingly pivotal role in chemical experiments.From quantum chemistry simulations to finite element simulations,researchers can always find an appropriate simulation method to elucidate the specific mechanisms at a certain resolution scale.However,in organic or inorganic synthesis,the synthesis mechanisms span multiple spatial and temporal scales of chemical experiments.Furthermore,the intricate nature of these mechanisms renders it impossible for any single simulation method to provide a comprehensive depiction of the entire process.In this perspective,using zeolite and polymer synthesis simulations as examples,we stress the significance of fullscale modeling techniques for chemical experiments and urge the corresponding sophisticated simulation platform. 展开更多
关键词 artificial intelligence full-scale modeling molecular dynamics
下载PDF
The loaded matrix:neurotrophin-enriched hydrogels for stem cell brain repair in Parkinson's disease
7
作者 Giulia Comini Eilis Dowd 《Neural Regeneration Research》 SCIE CAS 2025年第8期2315-2316,共2页
More than 200 years after Parkinson's disease was first described by the English surgeon whose name would eventually be given to the condition,available treatments remain purely symptomatic,leaving a critical unme... More than 200 years after Parkinson's disease was first described by the English surgeon whose name would eventually be given to the condition,available treatments remain purely symptomatic,leaving a critical unmet clinical need for a diseasemodifying therapy. 展开更多
关键词 CLINICAL loaded eventually
下载PDF
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
8
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) High metal loading Oxidase catalysis
下载PDF
Parallel Computing of the Underwater Explosion Cavitation Effects on Full-scale Ship Structures 被引量:7
9
作者 Zhi Zong Yanjie Zhao +2 位作者 Fan Ye Haitao Li Gang Chen 《Journal of Marine Science and Application》 2012年第4期469-477,共9页
As well as shock wave and bubble pulse loading, cavitation also has very significant influences on the dynamic response of surface ships and other near-surface marine structures to underwater explosive loadings. In th... As well as shock wave and bubble pulse loading, cavitation also has very significant influences on the dynamic response of surface ships and other near-surface marine structures to underwater explosive loadings. In this paper, the acoustic-structure coupling method embedded in ABAQUS is adopted to do numerical analysis of underwater explosion considering cavitation. Both the shape of bulk cavitation region and local cavitation region are obtained, and they are in good agreement with analytical results. The duration of reloading is several times longer than that of a shock wave. In the end, both the single computation and parallel computation of the cavitation effect on the dynamic responses of a full-scale ship are presented, which proved that reloading caused by cavitation is non-ignorable. All these results are helpful in understanding underwater explosion cavitation effects. 展开更多
关键词 underwater explosion CAVITATION parallel computation full-scale ship
下载PDF
Experimental investigations on small-and full-scale ship models with polyurea coatings subjected to underwater explosion 被引量:6
10
作者 Jian Liu Feng-jiang An +4 位作者 Cheng Wu Sha-sha Liao Ming-xue Zhou Dong-yu Xue Huan Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第7期1257-1268,共12页
Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate th... Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests. 展开更多
关键词 Polyurea coatings Small-scale model full-scale ship Underwater explosion Blast resistance
下载PDF
Experimental and analytical study on design performance of full-scale viscoelastic dampers 被引量:2
11
作者 Shiang-Jung Wang I-Chen Chiu +1 位作者 Chung-Han Yu Kuo-Chun Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期693-706,共14页
Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancin... Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancing the comfort of residents and serviceability of equipment inside. In past relevant research, most analytical models for characterizing the mechanical behavior of VE dampers were verified by comparing their predictions with performance test results from small-scale specimens, which might not adequately or conservatively represent the actual behavior of full-scale dampers, especially with regard to the ambient temperature, temperature rise, and heat convection effects. Thus, in this study, by using a high-performance testing facility with a temperature control system, full-scale VE dampers were dynamically tested with different displacement amplitudes, excitation frequencies, and ambient temperatures. By comparing the analytical predictions with the experimental results, it is demonstrated that adopting the fractional derivative method together with considering the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening, can reproduce the design performance of full-scale VE dampers very well. 展开更多
关键词 viscoelastic damper full-scale designperformance dynamic test fractional derivative model
下载PDF
Full-Scale Numerical Simulation of the Local Scour Under Combined Current and Wave Conditions Based on Field Data 被引量:1
12
作者 SUI Shu-huan ZHAO Xue-liang +2 位作者 CHEN Xin-rui DENG Wen-ni SHEN Kan-min 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期1032-1043,共12页
The monopile is the most common foundation to support offshore wind turbines.In the marine environment,local scour due to combined currents and waves is a significant issue that must be considered in the design of win... The monopile is the most common foundation to support offshore wind turbines.In the marine environment,local scour due to combined currents and waves is a significant issue that must be considered in the design of wind turbine foundations.In this paper,a full-scale numerical model was developed and validated based on field data from Rudong,China.The scour development around monopiles was investigated,and the effects of waves and the Reynolds number Re were analyzed.Several formulas for predicting the scour depth in the literature have been evaluated.It is found that waves can accelerate scour development even if the KC number is small(0.78<KC<1.57).The formula obtained from small-scale model tests may be unsafe or wasteful when it is applied in practical design due to the scale effect.A new equation for predicting the scour depth based on the average pile Reynolds number(Rea)is proposed and validated with field data.The equilibrium scour depth predicted using the proposed equation is evaluated and compared with those from nine equations in the literature.It is demonstrated that the values predicted from the proposed equation and from the S/M(Sheppard/Melville)equation are closer to the field data. 展开更多
关键词 full-scale numerical simulation field data scale effect Reynolds number effects local scour
下载PDF
Full-scale multi-functional test platform for investigating mechanical performance of track–subgrade systems of high-speed railways 被引量:4
13
作者 Wanming Zhai Kaiyun Wang +3 位作者 Zhaowei Chen Shengyang Zhu Chengbiao Cai Gang Liu 《Railway Engineering Science》 2020年第3期213-231,共19页
Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway... Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure. 展开更多
关键词 full-scale test High-speed railway Track–subgrade system Ballastless track Ballasted track Mechanical performance Long-term performance evolution Damage and degradation
下载PDF
Full-scale pullout tests of rock anchors in a limestone quarry focusing on bond failure at the anchor-grout and grout-rock interfaces 被引量:3
14
作者 Bjarte Grindheim Charlie CLi Are Håvard Høien 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2264-2279,共16页
Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile fa... Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile failure of the steel anchor,(b)anchor-grout interface failure,(c)grout-rock interface failure,and(d)rock mass uplift.Field tests were performed in a limestone quarry.These tests were designed to test failure modes B and C through pullout.In the tests of failure mode B,the shear stress on the anchor-grout interface is the largest at the top of the grout column and attenuates towards the distal end for small loads.The shear stress becomes uniformly distributed when the applied load is approximately 50%of the ultimate pullout load.The anchors designed to test failure mode C were installed with an endplate and had a higher toughness than the straight bar anchors.The shear stress on the grout-rock interface is the largest at the endplate and attenuates upward before slip starts along the interface.When the ultimate pullout load is reached,and the grout column starts to slip,the shear stress is approximately constant.The bond shear strength on the anchor-grout interface was approximately 20%of the uniaxial compressive strength of the grout,and the bond strength of the grout-rock interface was around 5%for that of the grout.The grout-rock interface is likely determined by whichever is weaker,the grout or the rock. 展开更多
关键词 Rock anchor load transfer Shear stress distribution Bond shear strength Field test
下载PDF
A Non-geometrically Similar Model for Predicting the Wake Field of Full-scale Ships 被引量:1
15
作者 Chunyu Guo Qi Zhang Yu Shen 《Journal of Marine Science and Application》 CSCD 2015年第3期225-233,共9页
The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual... The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non-geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)’s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully. 展开更多
关键词 wake field full-scale ships non-geometrically similar model scale effect KRISO’s container ship (KCS)
下载PDF
A Full-Scale Optimization of a Crop Spatial Planting Structure and its Associated Effects 被引量:1
16
作者 Qi Liu Jun Niu +1 位作者 Taisheng Du Shaozhong Kang 《Engineering》 SCIE EI CAS CSCD 2023年第9期139-152,共14页
Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environ... Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales. 展开更多
关键词 Planting structure optimization full-scale evaluation index system Water footprint SWAT-WF module Interprovincial food trade Entropy weight TOPSIS
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading 被引量:3
17
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines 被引量:3
18
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 Static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
下载PDF
State-of-the-art on the anchorage performance of rock bolts subjected to shear load 被引量:2
19
作者 Yu Chen Haodong Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期1-30,共30页
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults... Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts. 展开更多
关键词 Rock bolt Shear load Shear test Numerical simulation Analytical model
下载PDF
Optimum structural design of full-scale steel buildings using drift-tribe-charged system search
20
作者 Siamak Talatahari Hedayat Veladi +2 位作者 Mahdi Azizi Ali Moutabi-Alavi Salar Rahnema 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期825-842,共18页
In this paper,the potential of utilizing improved metaheuristic approaches in optimal design of building structures is concerned.In this regard,the drift-tribe-charged system search algorithm is proposed that the posi... In this paper,the potential of utilizing improved metaheuristic approaches in optimal design of building structures is concerned.In this regard,the drift-tribe-charged system search algorithm is proposed that the position and velocity updating processes of the charged system search is developed by implementing the mathematical presentation of the free-electron model utilized for metal conductors.In addition,the searching phase of the developed algorithm is also divided into three separate phases in order to improve the convergence capability of the algorithm.By means of these modifications,the exploitation and exploration rates of the standard algorithm are enhanced.In order to determine the ability of the proposed improved metaheuristic method considering some complex optimization problems,a 10-story steel building structure with 1026 structural members alongside a 60-story structure with 8272 members are utilized as numerical examples.The overall capability of the developed metaheuristic approach is compared with other metaheuristics.A total number of 30 independent runs have been conducted for each of the standard and proposed methods while a statistical analysis is also conducted for comparative purposes.The obtained optimum results demonstrated that the proposed metaheuristic approach is capable of preparing better outcomes than other metaheuristics. 展开更多
关键词 drift-tribe-charged system search optimum structural design full-scale steel building statistical analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部