The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in su...A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.展开更多
This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bo...This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.展开更多
Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full powe...Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.展开更多
This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, an...An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.展开更多
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ...For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.展开更多
Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to pr...Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault.展开更多
Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the...Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the reason for was very difficult establishing wind turbine system. In this paper, it is define equation of converting relation of mechanical & electric power. And it is verified by experimental methods. Defined equation will be used in developing electric devices such as inverter and controller in wind turbines. In addition this method can be used in the fields that utilize the rotational power into electrical power through generator.展开更多
The characteristics of induction generator based fixed-speed wind turbines(FSWT)are investigated.The impacts of different execution time in protective operations are studied under different fault duration and various ...The characteristics of induction generator based fixed-speed wind turbines(FSWT)are investigated.The impacts of different execution time in protective operations are studied under different fault duration and various wind velocity situations,e.g.,FSWT stabilities of load shedding in distribution systems.Based on this research,a dynamic protective control strategy for a distributed generation system(DGS)with FSWT is proposed.Finally,simulation results demonstrate the effectiveness of the strategy.展开更多
Recently, mankind’s need for more amount of energy has been increasing day by day, though there is a trend to reduce the usage of the traditional energy source to an energy carrier (or fuel) that results in emitting ...Recently, mankind’s need for more amount of energy has been increasing day by day, though there is a trend to reduce the usage of the traditional energy source to an energy carrier (or fuel) that results in emitting harmful gases to the envi-ronment that is separated in the air and water. Researchers have conducted re-searches to increase projects that will generate clean and renewable energy. Us-age of renewable energy via mankind is in continuous progress such as solar en-ergy, bioenergy, ocean energy and wind energy. Wind energy waste while the car moved was used to produce electric energy. In this paper, the usage of unused wind energy in vehicles was developed so that additional power for vehicles was enable via converting wind power into electric one. The wind turbine was assem-bled from a fan and transducer. Indoor test showed generation of different elec-tric voltages when varying the ambient temperature. The main experiment was carried out so that the wind turbine was installed above the car;values of volt-ages in various speeds of the car were recorded. When two fans were used with different specifications, the consequence was a direct proportionality that changes the happened between voltages and car’s speeds. A comparison between the two fans showed that: the fan with big blade dimensions was the best one to generate voltages. Finally, the high voltages were generated in low temperatures. These results reveal that we can avail from wind energy to supply vehicles with electricity as long as vehicles move along the way.展开更多
This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phas...This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phase and active transformations, the three-phase model is transformed to two-phase equations by making both the stator and rotor as reference frames, finally converting to arbitrary reference frame, which is useful for the modelling of the axial flux machine. The torque, current, and voltage equations are expressed to improve the simulation reliability. Based on the developed equations, the mathematical model for the axial flux machine is developed using the MATLAB/Simulink. Starting with the axial flux motor model, when the load on the motor increases, how the parameters like torque, current, and speed of the motor vary are explored in this paper. Then for the axial flux generator model, when the wind speed exceeds the rated speed how the torque, line voltages, currents, power and speed of the generator behave are investigated and presented in this paper. The developed model in this paper could be extended to a twin-rotor axial flux synchronous machine, which will lead to the development of more efficient WECS.展开更多
Future power system faces several challenges,one of them is the high penetration level of intermittent wind power generation,providing small or even no inertial response and being not contributing to the frequency sta...Future power system faces several challenges,one of them is the high penetration level of intermittent wind power generation,providing small or even no inertial response and being not contributing to the frequency stability.The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented.Four different drive-train models based on the multi-body system are developed.The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness.The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models,but no significant differences are found in the number-mass models.Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance.The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective.The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change,it is positive for the frequency stability.展开更多
This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), pe...This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.展开更多
This paper presents a new operational strategy for a large-scale wind farm (WF) which is composed of both fixed speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) and variable speed wind turbines...This paper presents a new operational strategy for a large-scale wind farm (WF) which is composed of both fixed speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) and variable speed wind turbines with permanent magnet synchronous generators (VSWT-PMSGs). FSWT-SCIGs suffer greatly from meeting the requirements of fault ride through (FRT), because they are largely dependent on reactive power. Integration of flexible ac transmission system (FACTS) devices is a solution to overcome that problem, though it definitely increases the overall cost. Therefore, in this paper, a new method is proposed to stabilize FSWT-SCIGs by using VSWT-PMSGs in a WF. This is achieved by injecting the reactive power to the grid during fault condition by controlling the grid side converter (GSC) of PMSG. The conventional proportional-integral (PI)-based cascaded controller is usually used for GSC which can inject small amount of reactive power during fault period. Thus, it cannot stabilize larger rating of SCIG. In this paper, a suitable fuzzy logic controller (FLC) is proposed in the cascaded controller of GSC of PMSG in order to increase reactive power injection and thus improve the FRT capability of WF during voltage dip situation due to severe network fault. To evaluate the proposed controller performance, simulation analyses are performed on a modified IEEE nine-bus system. Simulation results clearly show that the proposed method can be a cost-effective solution which can effectively stabilize the larger rating of SCIG compared to conventional PI based control strategy.展开更多
This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)c...This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)compensation from DASM can be regulated independently through secondary-excitation controlling.Simulation results by power system computer aided design(PSCAD)show that DASM can restore the wind-generator system to a normal operating condition rapidly even following severe transmission-line failures.Comparison studies have also been performed between wind turbine pitch control and proposed method.展开更多
The measuring system for estimation of power of wind flow generated by the train movement has been created. The advantages of the proposed system are the cheapness and simple design. With its simplicity of design and ...The measuring system for estimation of power of wind flow generated by the train movement has been created. The advantages of the proposed system are the cheapness and simple design. With its simplicity of design and easy build-up of channels, designed measuring system can be used for a wide range of technical problems. This paper describes the design process, validation and conducting the first field test of this measuring system.展开更多
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
文摘A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.
文摘This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.
文摘Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
文摘An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.
文摘For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.
文摘Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault.
文摘Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the reason for was very difficult establishing wind turbine system. In this paper, it is define equation of converting relation of mechanical & electric power. And it is verified by experimental methods. Defined equation will be used in developing electric devices such as inverter and controller in wind turbines. In addition this method can be used in the fields that utilize the rotational power into electrical power through generator.
基金supported by the Danish Academy of Wind Energy(DAWE)
文摘The characteristics of induction generator based fixed-speed wind turbines(FSWT)are investigated.The impacts of different execution time in protective operations are studied under different fault duration and various wind velocity situations,e.g.,FSWT stabilities of load shedding in distribution systems.Based on this research,a dynamic protective control strategy for a distributed generation system(DGS)with FSWT is proposed.Finally,simulation results demonstrate the effectiveness of the strategy.
文摘Recently, mankind’s need for more amount of energy has been increasing day by day, though there is a trend to reduce the usage of the traditional energy source to an energy carrier (or fuel) that results in emitting harmful gases to the envi-ronment that is separated in the air and water. Researchers have conducted re-searches to increase projects that will generate clean and renewable energy. Us-age of renewable energy via mankind is in continuous progress such as solar en-ergy, bioenergy, ocean energy and wind energy. Wind energy waste while the car moved was used to produce electric energy. In this paper, the usage of unused wind energy in vehicles was developed so that additional power for vehicles was enable via converting wind power into electric one. The wind turbine was assem-bled from a fan and transducer. Indoor test showed generation of different elec-tric voltages when varying the ambient temperature. The main experiment was carried out so that the wind turbine was installed above the car;values of volt-ages in various speeds of the car were recorded. When two fans were used with different specifications, the consequence was a direct proportionality that changes the happened between voltages and car’s speeds. A comparison between the two fans showed that: the fan with big blade dimensions was the best one to generate voltages. Finally, the high voltages were generated in low temperatures. These results reveal that we can avail from wind energy to supply vehicles with electricity as long as vehicles move along the way.
文摘This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phase and active transformations, the three-phase model is transformed to two-phase equations by making both the stator and rotor as reference frames, finally converting to arbitrary reference frame, which is useful for the modelling of the axial flux machine. The torque, current, and voltage equations are expressed to improve the simulation reliability. Based on the developed equations, the mathematical model for the axial flux machine is developed using the MATLAB/Simulink. Starting with the axial flux motor model, when the load on the motor increases, how the parameters like torque, current, and speed of the motor vary are explored in this paper. Then for the axial flux generator model, when the wind speed exceeds the rated speed how the torque, line voltages, currents, power and speed of the generator behave are investigated and presented in this paper. The developed model in this paper could be extended to a twin-rotor axial flux synchronous machine, which will lead to the development of more efficient WECS.
文摘Future power system faces several challenges,one of them is the high penetration level of intermittent wind power generation,providing small or even no inertial response and being not contributing to the frequency stability.The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented.Four different drive-train models based on the multi-body system are developed.The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness.The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models,but no significant differences are found in the number-mass models.Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance.The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective.The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change,it is positive for the frequency stability.
文摘This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.
文摘This paper presents a new operational strategy for a large-scale wind farm (WF) which is composed of both fixed speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) and variable speed wind turbines with permanent magnet synchronous generators (VSWT-PMSGs). FSWT-SCIGs suffer greatly from meeting the requirements of fault ride through (FRT), because they are largely dependent on reactive power. Integration of flexible ac transmission system (FACTS) devices is a solution to overcome that problem, though it definitely increases the overall cost. Therefore, in this paper, a new method is proposed to stabilize FSWT-SCIGs by using VSWT-PMSGs in a WF. This is achieved by injecting the reactive power to the grid during fault condition by controlling the grid side converter (GSC) of PMSG. The conventional proportional-integral (PI)-based cascaded controller is usually used for GSC which can inject small amount of reactive power during fault period. Thus, it cannot stabilize larger rating of SCIG. In this paper, a suitable fuzzy logic controller (FLC) is proposed in the cascaded controller of GSC of PMSG in order to increase reactive power injection and thus improve the FRT capability of WF during voltage dip situation due to severe network fault. To evaluate the proposed controller performance, simulation analyses are performed on a modified IEEE nine-bus system. Simulation results clearly show that the proposed method can be a cost-effective solution which can effectively stabilize the larger rating of SCIG compared to conventional PI based control strategy.
文摘This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)compensation from DASM can be regulated independently through secondary-excitation controlling.Simulation results by power system computer aided design(PSCAD)show that DASM can restore the wind-generator system to a normal operating condition rapidly even following severe transmission-line failures.Comparison studies have also been performed between wind turbine pitch control and proposed method.
文摘The measuring system for estimation of power of wind flow generated by the train movement has been created. The advantages of the proposed system are the cheapness and simple design. With its simplicity of design and easy build-up of channels, designed measuring system can be used for a wide range of technical problems. This paper describes the design process, validation and conducting the first field test of this measuring system.