This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ...This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.展开更多
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on...Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen.展开更多
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response ...Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.展开更多
The monopile is the most common foundation to support offshore wind turbines.In the marine environment,local scour due to combined currents and waves is a significant issue that must be considered in the design of win...The monopile is the most common foundation to support offshore wind turbines.In the marine environment,local scour due to combined currents and waves is a significant issue that must be considered in the design of wind turbine foundations.In this paper,a full-scale numerical model was developed and validated based on field data from Rudong,China.The scour development around monopiles was investigated,and the effects of waves and the Reynolds number Re were analyzed.Several formulas for predicting the scour depth in the literature have been evaluated.It is found that waves can accelerate scour development even if the KC number is small(0.78<KC<1.57).The formula obtained from small-scale model tests may be unsafe or wasteful when it is applied in practical design due to the scale effect.A new equation for predicting the scour depth based on the average pile Reynolds number(Rea)is proposed and validated with field data.The equilibrium scour depth predicted using the proposed equation is evaluated and compared with those from nine equations in the literature.It is demonstrated that the values predicted from the proposed equation and from the S/M(Sheppard/Melville)equation are closer to the field data.展开更多
The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom...The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.展开更多
This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke ...This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.展开更多
Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the a...Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.展开更多
Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and emb...Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software.展开更多
The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Ba...The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Based on the experimental results, failure process and mechanism of barrier dam due to overtopping are analyzed and further verified by simulating the experimental overtopping failure process. The results indicate that the barrier dam will develop during the entire process of overtopping in the width direction, whereas the breach will cease to develop at an early stage in the depth direction because of the large particles that accumulate on the downstream slope. Moreover, headcut erosion can be clearly observed in the first two stages of overtopping, and coarsening on the downstream slope occurs in the last stage of overtopping. Thus, the bottom part of the barrier dam can survive after dam breaching and full dam failure becomes relatively rare for a barrier dam. Furthermore, the remaining breach would be smaller than that of a homogeneous cohesive dam under the same conditions.展开更多
Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different...Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different degrees of soil degradation was applied to field data in order to probe the dynamic processes and mechanisms of vegetation evolution due to the effects of the soil's ecological deterioration on grassland vegetation. Comparisons were made between the theoretical results and the practical surveys with satisfactory results.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle c...A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle collision avoidance(MVCA)algorithm is proposed by extending the reciprocal n-body collision avoidance method. MVCA enables the intelligent vehicles to choose their destinations and control inputs independently,without needing to negotiate with each other or with the coordinator. Compared to the centralized trajectory-planning algorithm, MVCA reduces computation costs and greatly improves the robustness of the system. Because the destination of each intelligent vehicle can be regarded as private, which can be protected by MVCA, at the same time MVCA can provide a real-time trajectory planning for intelligent vehicles. Therefore,MVCA can better improve the safety of intelligent vehicles. The simulation was conducted in MATLAB, including crossroads scene simulation and circular exchange position simulation. The results show that MVCA behaves safely and reliably. The effects of latency and packet loss on MVCA are also statistically investigated through theoretically formulating broadcasting process based on one-dimensional Markov chain. The results uncover that the tolerant delay should not exceed the half of deciding cycle of trajectory planning, and shortening the sending interval could alleviate the negative effects caused by the packet loss to an extent. The cases of short delay(< 100100 ms) and low packet loss(< 5%) can bring little influence to those trajectory planning algorithms that only depend on V2 V to sense the context, but the unpredictable collision may occur if the delay and packet loss are further worsened. The MVCA was also tested by a real intelligent vehicle, the test results prove the operability of MVCA.展开更多
In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforatio...In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process,perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure(HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130℃/44 MPa and 137℃/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critic...Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critical shear stress of sand grains.The numerical simulation results were verified using data measured by the wind tunnel test.The results showed that when the porosity was the same,the size and position of the vortex on the leeward side of the sand barrier were related to the inlet wind speed.As the wind speed increased,the vortex volume increased and the positions of the separation and reattachment points moved toward the leeward side.When the porosity of the sand barrier was 30%,the strength of the acceleration zone above the sand barrier was the highest,and the strength of the acceleration zone was negatively correlated with the porosity.Sand erosion and sedimentation distance were related to wind speed.With an increase in wind speed,the sand grain forward erosion or reverse erosion areas on the leeward side of the sand barrier gradually replaced the sedimentation area.With an increase in porosity,the sand sedimentation distance on the leeward side of the sand barrier gradually shortened,and the sand erosion area gradually disappeared.The sand sedimentation distance on the leeward side of the sand barrier with 30%porosity was the longest.The numerical simulation results were in good agreement with the wind tunnel test results.Based on the sand erosion and sedimentation results of the numerical simulation and wind tunnel test,when the porosity was 30%,the protection effect of the High Density Polyethylene(HDPE)board sand barrier was best.展开更多
The seismic safety of the reinforcement dam slope is studied through shaking table test and numerical simulation.The dynamic characteristics of dam slopes,failure mechanism,seismic stability,as well as the effect of r...The seismic safety of the reinforcement dam slope is studied through shaking table test and numerical simulation.The dynamic characteristics of dam slopes,failure mechanism,seismic stability,as well as the effect of reinforcement during earthquakes are discussed.An elasto-plastic analysis method (FLAC) is used to simulate the dynamic failure process of the reinforcement dam slope.The change law of permanent displacement of dam slope is studied.The effect of the length and the space of reinforcement on the depth of slip surface and the slope stability are investigated.Good agreement is obtained between the numerical results and those from shaking table tests.The results show that the dynamic failure is a gradual process not at a particular time.With the increase of the reinforcement length or the decreasing reinforcement spacing,the slip surface becomes deeper and thus the slope stability is improved.The reinforcement can obviously enhance the overall stability of slope dam.It can also effectively control the shallow sliding of slope.These researches provide basic data for reinforcement measures design of earth-rockfill dam.展开更多
This paper describes the setup and working mechanism of a simulation test apparatus for marine corrosion. Experimental results showed the apparatus can basically reflect the corrosion behavior of steel in various mari...This paper describes the setup and working mechanism of a simulation test apparatus for marine corrosion. Experimental results showed the apparatus can basically reflect the corrosion behavior of steel in various marine environments, and is simple, convenient, and reliable for testing steel used for marine engineering.展开更多
Serious riverbank erosion,caused by scouring and soil siltation on the bank slope in the lower reaches of the Tarim River,Northwest China urgently requires a solution.Plant roots play an important role in enhancing so...Serious riverbank erosion,caused by scouring and soil siltation on the bank slope in the lower reaches of the Tarim River,Northwest China urgently requires a solution.Plant roots play an important role in enhancing soil shear strength on the slopes to maintain slope soils,but the extent of enhancement of soil shear strength by different root distribution patterns is unclear.The study used a combination of indoor experiments and numerical simulation to investigate the effects of varying plant root morphologies on the shear strength of the sandy soil in the Tarim River.The results showed that:(1)by counting the root morphology of dominant vegetation on the bank slope,we summarized the root morphology of dominant vegetation along the coast as vertical,horizontal,and claw type;(2)the shear strength of root-soil composites(RSCs)was significantly higher than that of remolded soil,and the presence of root system made the strain-softening of soil body significantly weakened so that RSCs had better mechanical properties;and(3)compared with the lateral roots,the average particle contact degree of vertical root system was higher,and the transition zone of shear strength was more prominent.Hence,vegetation with vertical root system had the best effect on soil protection and slope fixation.The results of this study have important guiding significance for prevention and control of soil erosion in the Tarim River basin,the restoration of riparian ecosystems,and the planning of water conservancy projects.展开更多
基金This research has been conducted under SEGTRANS project,funded by the Centre for Industrial Technological Development(CDTI,Government of Spain).
文摘This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
基金supported by the European Union and the Hungarian State,co-financed by the European Structural and Investment Funds in the framework of the GINOP-2.3.4-15-2016-00004 project。
文摘Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
文摘Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.
基金financially supported by the National Natural Science Foundation of China (Grant No.52378329)。
文摘The monopile is the most common foundation to support offshore wind turbines.In the marine environment,local scour due to combined currents and waves is a significant issue that must be considered in the design of wind turbine foundations.In this paper,a full-scale numerical model was developed and validated based on field data from Rudong,China.The scour development around monopiles was investigated,and the effects of waves and the Reynolds number Re were analyzed.Several formulas for predicting the scour depth in the literature have been evaluated.It is found that waves can accelerate scour development even if the KC number is small(0.78<KC<1.57).The formula obtained from small-scale model tests may be unsafe or wasteful when it is applied in practical design due to the scale effect.A new equation for predicting the scour depth based on the average pile Reynolds number(Rea)is proposed and validated with field data.The equilibrium scour depth predicted using the proposed equation is evaluated and compared with those from nine equations in the literature.It is demonstrated that the values predicted from the proposed equation and from the S/M(Sheppard/Melville)equation are closer to the field data.
文摘The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.
基金Supported by the Fund from COPC PL19-3 FPSO Project
文摘This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.
文摘Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.
文摘Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software.
基金financial support from the National Natural Science Foundation of China (Grant No. 51709025)the Chongqing Science and Technology Commission of China (Grant No. cstc2018jcyjAX0084, cstc2018jcyjAX0391 and cstc2016jcyjA0551)Open Research Fund of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources (Grant No. YK319006)
文摘The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Based on the experimental results, failure process and mechanism of barrier dam due to overtopping are analyzed and further verified by simulating the experimental overtopping failure process. The results indicate that the barrier dam will develop during the entire process of overtopping in the width direction, whereas the breach will cease to develop at an early stage in the depth direction because of the large particles that accumulate on the downstream slope. Moreover, headcut erosion can be clearly observed in the first two stages of overtopping, and coarsening on the downstream slope occurs in the last stage of overtopping. Thus, the bottom part of the barrier dam can survive after dam breaching and full dam failure becomes relatively rare for a barrier dam. Furthermore, the remaining breach would be smaller than that of a homogeneous cohesive dam under the same conditions.
文摘Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different degrees of soil degradation was applied to field data in order to probe the dynamic processes and mechanisms of vegetation evolution due to the effects of the soil's ecological deterioration on grassland vegetation. Comparisons were made between the theoretical results and the practical surveys with satisfactory results.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
基金supported by the National Natural Science Foundation of China(61572229,6171101066)the Key Scientific and Technological Projects for Jilin Province Development Plan(20170204074GX,20180201068GX)Jilin Provincial International Cooperation Foundation(20180414015GH)。
文摘A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle collision avoidance(MVCA)algorithm is proposed by extending the reciprocal n-body collision avoidance method. MVCA enables the intelligent vehicles to choose their destinations and control inputs independently,without needing to negotiate with each other or with the coordinator. Compared to the centralized trajectory-planning algorithm, MVCA reduces computation costs and greatly improves the robustness of the system. Because the destination of each intelligent vehicle can be regarded as private, which can be protected by MVCA, at the same time MVCA can provide a real-time trajectory planning for intelligent vehicles. Therefore,MVCA can better improve the safety of intelligent vehicles. The simulation was conducted in MATLAB, including crossroads scene simulation and circular exchange position simulation. The results show that MVCA behaves safely and reliably. The effects of latency and packet loss on MVCA are also statistically investigated through theoretically formulating broadcasting process based on one-dimensional Markov chain. The results uncover that the tolerant delay should not exceed the half of deciding cycle of trajectory planning, and shortening the sending interval could alleviate the negative effects caused by the packet loss to an extent. The cases of short delay(< 100100 ms) and low packet loss(< 5%) can bring little influence to those trajectory planning algorithms that only depend on V2 V to sense the context, but the unpredictable collision may occur if the delay and packet loss are further worsened. The MVCA was also tested by a real intelligent vehicle, the test results prove the operability of MVCA.
基金the support of the Foundation of Natural Science Foundation of Shaanxi Province, Grant/ Award nos. 2023-JC-YB-361National Natural Science Foundation (Number 52104033)。
文摘In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process,perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure(HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130℃/44 MPa and 137℃/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
基金financially supported by the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Natural Science Foundation of Gansu Province,China(20JR10RA231)+1 种基金the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347)an Special Funds for Guiding Local Scientific and Technological Development by the Central Government(22ZY1QA005)。
文摘Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critical shear stress of sand grains.The numerical simulation results were verified using data measured by the wind tunnel test.The results showed that when the porosity was the same,the size and position of the vortex on the leeward side of the sand barrier were related to the inlet wind speed.As the wind speed increased,the vortex volume increased and the positions of the separation and reattachment points moved toward the leeward side.When the porosity of the sand barrier was 30%,the strength of the acceleration zone above the sand barrier was the highest,and the strength of the acceleration zone was negatively correlated with the porosity.Sand erosion and sedimentation distance were related to wind speed.With an increase in wind speed,the sand grain forward erosion or reverse erosion areas on the leeward side of the sand barrier gradually replaced the sedimentation area.With an increase in porosity,the sand sedimentation distance on the leeward side of the sand barrier gradually shortened,and the sand erosion area gradually disappeared.The sand sedimentation distance on the leeward side of the sand barrier with 30%porosity was the longest.The numerical simulation results were in good agreement with the wind tunnel test results.Based on the sand erosion and sedimentation results of the numerical simulation and wind tunnel test,when the porosity was 30%,the protection effect of the High Density Polyethylene(HDPE)board sand barrier was best.
基金Sponsored by the National Natural Science Fund for Distinguished Young Scholars (Grant No. 50808032 )the National Key Basic Research Program(Grant No. 2008CB425801)+2 种基金the National Natural Science Fund for Hydropower Development of Yalongjiang Project (Grant No. 50679093)the National Mega-project of Natural Science Foundation Program (Grant No. 90815024)the Innovative Research Team in Universities Program Funded by Ministry of Education,China (Grant No. IRT0518)
文摘The seismic safety of the reinforcement dam slope is studied through shaking table test and numerical simulation.The dynamic characteristics of dam slopes,failure mechanism,seismic stability,as well as the effect of reinforcement during earthquakes are discussed.An elasto-plastic analysis method (FLAC) is used to simulate the dynamic failure process of the reinforcement dam slope.The change law of permanent displacement of dam slope is studied.The effect of the length and the space of reinforcement on the depth of slip surface and the slope stability are investigated.Good agreement is obtained between the numerical results and those from shaking table tests.The results show that the dynamic failure is a gradual process not at a particular time.With the increase of the reinforcement length or the decreasing reinforcement spacing,the slip surface becomes deeper and thus the slope stability is improved.The reinforcement can obviously enhance the overall stability of slope dam.It can also effectively control the shallow sliding of slope.These researches provide basic data for reinforcement measures design of earth-rockfill dam.
文摘This paper describes the setup and working mechanism of a simulation test apparatus for marine corrosion. Experimental results showed the apparatus can basically reflect the corrosion behavior of steel in various marine environments, and is simple, convenient, and reliable for testing steel used for marine engineering.
基金funded by the Key Research and Development Task of Xinjiang Uygur Autonomous Region, China (2022B03024-3)
文摘Serious riverbank erosion,caused by scouring and soil siltation on the bank slope in the lower reaches of the Tarim River,Northwest China urgently requires a solution.Plant roots play an important role in enhancing soil shear strength on the slopes to maintain slope soils,but the extent of enhancement of soil shear strength by different root distribution patterns is unclear.The study used a combination of indoor experiments and numerical simulation to investigate the effects of varying plant root morphologies on the shear strength of the sandy soil in the Tarim River.The results showed that:(1)by counting the root morphology of dominant vegetation on the bank slope,we summarized the root morphology of dominant vegetation along the coast as vertical,horizontal,and claw type;(2)the shear strength of root-soil composites(RSCs)was significantly higher than that of remolded soil,and the presence of root system made the strain-softening of soil body significantly weakened so that RSCs had better mechanical properties;and(3)compared with the lateral roots,the average particle contact degree of vertical root system was higher,and the transition zone of shear strength was more prominent.Hence,vegetation with vertical root system had the best effect on soil protection and slope fixation.The results of this study have important guiding significance for prevention and control of soil erosion in the Tarim River basin,the restoration of riparian ecosystems,and the planning of water conservancy projects.