This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of po...This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.展开更多
Topological zero-line modes(ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spinvalley transport, which support a platform for exploring quantum transport physics and potential applications...Topological zero-line modes(ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spinvalley transport, which support a platform for exploring quantum transport physics and potential applications in spintronic/valleytronic devices. In this work, we investigate the beam-splitting behaviors of the charge current due to the ZLMs in a three-terminal system. We show that with certain combinations of ZLMs, the incident charge current along the interface between different topological phases can be divided into different polarized currents with unit transmittance in two outgoing terminals. As a result, fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters are generated. The mechanism of these splitters is attributed to the cooperative effects of the distribution of the ZLMs and the intervalley and intravalley scatterings that are modulated by the wave-vector mismatch and group velocity mismatch. Interestingly, half-quantized transmittance of these scatterings is found in a fully spin-valley-polarized electron beam splitter.Furthermore, the results indicate that these splitters can be applicable to graphene, silicene, germanene and stanene due to their robustness against the spin–orbit coupling. Our findings offer a new way to understand the transport mechanism and investigate the promising applications of ZLMs.展开更多
On-chip optical communications are growingly aiming at multimode operation together with mode-division multiplex-ing to further increase the transmission capacity.Optical switches,which are capable of optical signals ...On-chip optical communications are growingly aiming at multimode operation together with mode-division multiplex-ing to further increase the transmission capacity.Optical switches,which are capable of optical signals switching at the nodes,play a key role in optical networks.We demonstrate a 2×2 electro-optic Mach-Zehnder interferometer-based mode-and polar-ization-selective switch fabricated by standard complementary metal-oxide-semiconductor process.An electro optic tuner based on a PN-doped junction in one of the Mach-Zehnder interferometer arms enables dynamic switching in 11 ns.For all the channels,the overall insertion losses and inter-modal crosstalk values are below 9.03 and-15.86 dB at 1550 nm,respect-ively.展开更多
A novel single-mode single-polarization (SMSP) photonic crystal fibre has been proposed and analysed based on the polarization-dependent coupling and absorption effect via a full-vector finite element method with pe...A novel single-mode single-polarization (SMSP) photonic crystal fibre has been proposed and analysed based on the polarization-dependent coupling and absorption effect via a full-vector finite element method with perfectly matched layers. The numerical results predict that very efficient SMSP operation can be achieved with both high bandwidth and high extinction ratio at low loss penalty. Effects of the fibre structural parameters on the SMSP bandwidth and extinction ratio have been explored, which will provide useful guide for the design and fabrication of the fibre. The results obtained will be instructive for the realization of new SMSP fibres with high performance.展开更多
Birefringence (polarization-related phase-shift), polarization dependent gain (PDG) and mode coupling are three factors that may synchronously influence the transmission of single-wavelength polarized light in opt...Birefringence (polarization-related phase-shift), polarization dependent gain (PDG) and mode coupling are three factors that may synchronously influence the transmission of single-wavelength polarized light in optical fibers. This paper obtains a new Mueller matrix analysis, which can be used under conditions that all these three factors are existing and changing. According to our transmission model, the state of polarization (SOP) changes along an optical mierostructure fiber with co-existence of birefringence-PDG-mode coupling were simulated. The simulated results, which show the phenomena of SOP constringency, are in good agreement with previous theoretical analyses.展开更多
The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the tr...The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.展开更多
A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standar...A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.展开更多
Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challengi...Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challenging task, because PMD possesses the time-varying and statistical properties. The particle swarm optimization(PSO) algorithm is introduced into self-adaptive PMD compensation as feedback control algorithm. The experiment results show that PSO-based control algorithm has some unique features of rapid convergence to the global optimum without being trapped in local sub-optima and good robustness to noise in the optical fiber transmission line that has never been achieved in PMD compensation before.展开更多
A simple two-section polarization mode dispersion(PMD) compensator is proposed for multichannel PMD compensation, which can compensate two or even more channels simultaneously. Because of the statistical characteristi...A simple two-section polarization mode dispersion(PMD) compensator is proposed for multichannel PMD compensation, which can compensate two or even more channels simultaneously. Because of the statistical characteristics and the frequency-dependence of PMD, for current single mode fiber with moderate PMD, the probability that all channels are severely degraded at the same time is extremely small, which makes it possible to compensate a dense wavelength division multiplexing(DWDM) transmission system with moderate PMD using this compensator. It is shown that the outage probability of a 40×43 Gb/s DWDM transmission system using this compensator is decreased significantly from 3.6×10-3 to 3.6×10-5.展开更多
The characteristics of reflected light of a 1-D guided-mode resonance filter(GMRF)are studied in this paper.A triple-layer GMRF is designed by using the finite difference time domain method under non-polarized light i...The characteristics of reflected light of a 1-D guided-mode resonance filter(GMRF)are studied in this paper.A triple-layer GMRF is designed by using the finite difference time domain method under non-polarized light illumination.Numerical results show that the reflectance spectra of TE and TM polarizations can be changed by altering the fill factor f of the GMRF.Moreover,by calculating the color of the reflected light with the chromaticity theory,we find that the color of reflected light becomes pure when f is 0.9.The results show that the color and polarization degree of the reflected light of a GMRF are tunable by altering the fill factor.展开更多
A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium...A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R 〉 99.5%) and wide angular bandwidth (θ≈ 20°, R 〉 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm-l.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments.展开更多
In this work the results of polarization researches of low-optical fiber waveguides with conservation of polarization are presented. Obtained results quite convincingly testify regarding a high sensitivity low-mode re...In this work the results of polarization researches of low-optical fiber waveguides with conservation of polarization are presented. Obtained results quite convincingly testify regarding a high sensitivity low-mode regime of work of an optical fiber to anisotropic external influences, in comparison with one-mode regime of work of the same fibre. This result, can represent a big practical value at the realization of high-sensitivity fiber-optical devices of different physical values.展开更多
A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the pol...A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.展开更多
Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good effic...Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm 4.6 mm, 5 mm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.展开更多
The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. T...The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.展开更多
We design an 850 nm tunable vertical-cavity surface-emitting laser(VCSEL)structure using an internal-cavity sub-wavelength grating.The use of such a tuning structure allows for wider wavelength tuning range and more s...We design an 850 nm tunable vertical-cavity surface-emitting laser(VCSEL)structure using an internal-cavity sub-wavelength grating.The use of such a tuning structure allows for wider wavelength tuning range and more stable single-polarization as compared to conventional tunable VCSELs.The features of the internal-cavity grating effect on the wavelength tuning and polarization characteristics of the tunable VCSEL are analyzed.The simulation results show that the largest wavelength tuning range achieves 44.2 nm,and the maximum orthogonal polarization suppression ratio(OPSR)is 33.4 dB(TE-type)and 38.7 dB(TM-type).展开更多
Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode d...Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode decomposition (EMD), which is increasingly popular and has advantages over classical wavelet decomposition, can be used to remove short period variations from observed time series of pole co- ordinates. A hybrid model combing EMD and extreme learning machine (ELM), where high frequency signals are removed and processed time series is then modeled and predicted, is summarized in this paper. The prediction performance of the hybrid model is compared with that of the ELM-only method created from original time series. The results show that the proposed hybrid model outperforms the pure ELM method for both short-term and long-term prediction of pole coordinates. The improvement of prediction accuracy up to 360 days in the future is found to be 24.91% and 26.79% on average in terms of mean absolute error (MAE) for the xp and yp components of pole coordinates, respectively.展开更多
Longitudinal polar modes generate a macroscopic electric field in piezoelectric crystals and cause an additional mechanism of Raman scattering. The classical theory holds that transverse polar modes cannot produce suc...Longitudinal polar modes generate a macroscopic electric field in piezoelectric crystals and cause an additional mechanism of Raman scattering. The classical theory holds that transverse polar modes cannot produce such an additional mechanism. Our quantum theory shows that there is an additional Raman scattering mechanism arising from the electro-optic effect of transverse polar modes.展开更多
We present the generation of wavelength-switchable single-polarization solitons in an all-polarization-maintaining erbium-doped fiber laser mode-locked by a graphene saturable absorber. Ultrashort pulses centered at t...We present the generation of wavelength-switchable single-polarization solitons in an all-polarization-maintaining erbium-doped fiber laser mode-locked by a graphene saturable absorber. Ultrashort pulses centered at the wavelength of 1531.6 nm with the duration of 816 fs and centered at the wavelength of 1557.8 nm with the duration of 402 fs are separately obtained from the same fiber laser cavity. The cavity loss adjusted by the gold reflector plays a crucial role in wavelength switching.展开更多
Breathing solitons,i.e.,dynamic dissipative solitons with oscillating pulse shape and energy caused by different mechanisms of spatiotemporal instabilities,have received considerable interest from the aspects of nonli...Breathing solitons,i.e.,dynamic dissipative solitons with oscillating pulse shape and energy caused by different mechanisms of spatiotemporal instabilities,have received considerable interest from the aspects of nonlinear science and potential applications.However,by far,the study of breathing solitons is still limited within the time scale of hundreds of cavity round trips,which ignores the slow dynamics.To fill this lacuna,we theoretically investigate a new type of vector dissipative soliton breathing regime and experimentally demonstrate this concept using mode-locked fiber lasers,which arise from the desynchronization of orthogonal states of polarization(SOPs)in the form of complex oscillations of the phase difference between the states.The dynamic evolution of polarization states of the vector breathings solitons takes the form of a trajectory connecting two quasi-equilibrium orthogonal SOPs on the surface of the Poincarésphere.The dwelling time near each state is on the scale of a tenth of a thousand cavity round trip times that equals the breathing period,which is up to 2 orders of magnitude longer than that for common breathers.The obtained results can reveal concepts in nonlinear science and may unlock approaches to the flexible manipulation of laser waveforms toward various applications in spectroscopy and metrology.展开更多
基金Project supported by the Huawei Technology Project (Grant No.YBON2008014)the National "863" High Technology Projects (Grant No.2009AA01Z224)
文摘This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12304058, 12204073, and 12147102)Guangxi Science and Technology Base and Talent Project (Grant No. 2022AC21077)+1 种基金Natural Science Foundation of Guangxi Province (Grant No. 2024GXNSFBA010229)Foundation of Guangxi University of Science and Technology (Grant No. 21Z52)。
文摘Topological zero-line modes(ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spinvalley transport, which support a platform for exploring quantum transport physics and potential applications in spintronic/valleytronic devices. In this work, we investigate the beam-splitting behaviors of the charge current due to the ZLMs in a three-terminal system. We show that with certain combinations of ZLMs, the incident charge current along the interface between different topological phases can be divided into different polarized currents with unit transmittance in two outgoing terminals. As a result, fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters are generated. The mechanism of these splitters is attributed to the cooperative effects of the distribution of the ZLMs and the intervalley and intravalley scatterings that are modulated by the wave-vector mismatch and group velocity mismatch. Interestingly, half-quantized transmittance of these scatterings is found in a fully spin-valley-polarized electron beam splitter.Furthermore, the results indicate that these splitters can be applicable to graphene, silicene, germanene and stanene due to their robustness against the spin–orbit coupling. Our findings offer a new way to understand the transport mechanism and investigate the promising applications of ZLMs.
基金supported in part by the National Key Research and Development Program of China under Grant 2019YFB2203600the National Natural Science Foundation of China(NSFC)under Grant 61975115/61835008/62035016the Science and Technology Commission of Shanghai Municipality under Grant 2017SHZDZX03。
文摘On-chip optical communications are growingly aiming at multimode operation together with mode-division multiplex-ing to further increase the transmission capacity.Optical switches,which are capable of optical signals switching at the nodes,play a key role in optical networks.We demonstrate a 2×2 electro-optic Mach-Zehnder interferometer-based mode-and polar-ization-selective switch fabricated by standard complementary metal-oxide-semiconductor process.An electro optic tuner based on a PN-doped junction in one of the Mach-Zehnder interferometer arms enables dynamic switching in 11 ns.For all the channels,the overall insertion losses and inter-modal crosstalk values are below 9.03 and-15.86 dB at 1550 nm,respect-ively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60372100 and 60507007), and the State Key Development Program for Basic Research of China (Grant No 2003CB314906).Acknowledgment The first author Liu Xiao-Yi would like to thank professor Yu Chong-Xiu for her constant encouragement and kind support.
文摘A novel single-mode single-polarization (SMSP) photonic crystal fibre has been proposed and analysed based on the polarization-dependent coupling and absorption effect via a full-vector finite element method with perfectly matched layers. The numerical results predict that very efficient SMSP operation can be achieved with both high bandwidth and high extinction ratio at low loss penalty. Effects of the fibre structural parameters on the SMSP bandwidth and extinction ratio have been explored, which will provide useful guide for the design and fabrication of the fibre. The results obtained will be instructive for the realization of new SMSP fibres with high performance.
基金supported by the National Natural Science Foundation of China(Grants Nos.60877057 and 60907027)
文摘Birefringence (polarization-related phase-shift), polarization dependent gain (PDG) and mode coupling are three factors that may synchronously influence the transmission of single-wavelength polarized light in optical fibers. This paper obtains a new Mueller matrix analysis, which can be used under conditions that all these three factors are existing and changing. According to our transmission model, the state of polarization (SOP) changes along an optical mierostructure fiber with co-existence of birefringence-PDG-mode coupling were simulated. The simulated results, which show the phenomena of SOP constringency, are in good agreement with previous theoretical analyses.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the Beijing Municipal Natural Science Foundation,China (Grant Nos. 4092007,4112006,4102003,and 4132006)+1 种基金the National Natural Science Foundation of China (Grant Nos. 61076044,61036002,61036009,and 60978067)the Doctoral Fund of the Ministry of Education of China (Grant No. 20121103110018)
文摘The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.
基金Project supported by the Initiative Research Program of State Key Laboratory of Precision Measurement Technology and Instruments,Chinathe National Natural Science Foundation of China(Grant No.51527901)
文摘A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.
基金National Natural Science Foundation of China(60577046) Cooperation Building Project of Beijing EducationCommittee(XK100130437)
文摘Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challenging task, because PMD possesses the time-varying and statistical properties. The particle swarm optimization(PSO) algorithm is introduced into self-adaptive PMD compensation as feedback control algorithm. The experiment results show that PSO-based control algorithm has some unique features of rapid convergence to the global optimum without being trapped in local sub-optima and good robustness to noise in the optical fiber transmission line that has never been achieved in PMD compensation before.
基金National Nature Science Foundation of China(60320130174)
文摘A simple two-section polarization mode dispersion(PMD) compensator is proposed for multichannel PMD compensation, which can compensate two or even more channels simultaneously. Because of the statistical characteristics and the frequency-dependence of PMD, for current single mode fiber with moderate PMD, the probability that all channels are severely degraded at the same time is extremely small, which makes it possible to compensate a dense wavelength division multiplexing(DWDM) transmission system with moderate PMD using this compensator. It is shown that the outage probability of a 40×43 Gb/s DWDM transmission system using this compensator is decreased significantly from 3.6×10-3 to 3.6×10-5.
基金National Natural Science Foundation of China (61605035)
文摘The characteristics of reflected light of a 1-D guided-mode resonance filter(GMRF)are studied in this paper.A triple-layer GMRF is designed by using the finite difference time domain method under non-polarized light illumination.Numerical results show that the reflectance spectra of TE and TM polarizations can be changed by altering the fill factor f of the GMRF.Moreover,by calculating the color of the reflected light with the chromaticity theory,we find that the color of reflected light becomes pure when f is 0.9.The results show that the color and polarization degree of the reflected light of a GMRF are tunable by altering the fill factor.
基金supported by the Youth Science Research Foundation of China University of Mining and Technology (Grant No. 2009A058)the Fundamental Research Funds for the Central Universities (Grant No. 2010Qnb06)the Natural Science Foundation of Shanghai Committee of Science and Technology (Grant No. 10ZR1433500)
文摘A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R 〉 99.5%) and wide angular bandwidth (θ≈ 20°, R 〉 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm-l.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments.
文摘In this work the results of polarization researches of low-optical fiber waveguides with conservation of polarization are presented. Obtained results quite convincingly testify regarding a high sensitivity low-mode regime of work of an optical fiber to anisotropic external influences, in comparison with one-mode regime of work of the same fibre. This result, can represent a big practical value at the realization of high-sensitivity fiber-optical devices of different physical values.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11274181,10974100,and 10674075)the Tianjin Key Program of Application Foundations and Future Technology Research Project,China (Grant No. 10JCZDJC24300)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120031110033)
文摘A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.
文摘Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm 4.6 mm, 5 mm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.
基金Project supported the National Key Basic Research and Development Program of China (Grant Nos.2012CB921304 and 2013CB632805)the National Natural Science Foundation of China (Grant Nos.60990313,61306120,and 6106003)the Foundation of Fuzhou University (Grant No.022498)
文摘The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.
基金the Jilin Science and Technology Development Plan,China(Grant Nos.20180519018JH and 20190302052GX)Jilin Education Department“135”Science and Technology,China(Grant No.JJKH20190543KJ)+1 种基金the National Natural Science Foundation of China(Grant No.11474038)the Key Project of Equipment Pre-Research Fund of China(Grant No.61404140103)。
文摘We design an 850 nm tunable vertical-cavity surface-emitting laser(VCSEL)structure using an internal-cavity sub-wavelength grating.The use of such a tuning structure allows for wider wavelength tuning range and more stable single-polarization as compared to conventional tunable VCSELs.The features of the internal-cavity grating effect on the wavelength tuning and polarization characteristics of the tunable VCSEL are analyzed.The simulation results show that the largest wavelength tuning range achieves 44.2 nm,and the maximum orthogonal polarization suppression ratio(OPSR)is 33.4 dB(TE-type)and 38.7 dB(TM-type).
基金supported by Chinese Academy of Sciences(No.201491)“Light of West China” Program(201491)
文摘Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode decomposition (EMD), which is increasingly popular and has advantages over classical wavelet decomposition, can be used to remove short period variations from observed time series of pole co- ordinates. A hybrid model combing EMD and extreme learning machine (ELM), where high frequency signals are removed and processed time series is then modeled and predicted, is summarized in this paper. The prediction performance of the hybrid model is compared with that of the ELM-only method created from original time series. The results show that the proposed hybrid model outperforms the pure ELM method for both short-term and long-term prediction of pole coordinates. The improvement of prediction accuracy up to 360 days in the future is found to be 24.91% and 26.79% on average in terms of mean absolute error (MAE) for the xp and yp components of pole coordinates, respectively.
文摘Longitudinal polar modes generate a macroscopic electric field in piezoelectric crystals and cause an additional mechanism of Raman scattering. The classical theory holds that transverse polar modes cannot produce such an additional mechanism. Our quantum theory shows that there is an additional Raman scattering mechanism arising from the electro-optic effect of transverse polar modes.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.PCSIRT:1212)the Key Grant Science and Technology Planning Project of Beijing,China(Grant Nos.PXM2013 014224 000077 and PXM2012 014224 000019)the Science and Technology Planning Project of Beijing Municipal Commission of Education,China(Grant No.KM201611232008)
文摘We present the generation of wavelength-switchable single-polarization solitons in an all-polarization-maintaining erbium-doped fiber laser mode-locked by a graphene saturable absorber. Ultrashort pulses centered at the wavelength of 1531.6 nm with the duration of 816 fs and centered at the wavelength of 1557.8 nm with the duration of 402 fs are separately obtained from the same fiber laser cavity. The cavity loss adjusted by the gold reflector plays a crucial role in wavelength switching.
基金funding support:The National Natural Science Foundation of China(Grant Nos.61975107,62075071,and 61605107)the‘111’Project(Grant No.D20031)+2 种基金UK EPSRC(Grant No.EP/W002868/1)Leverhulme Trust(Grant No.HARVEST RPG-2023-073)Horizon 2020 ETN MEFISTA(Grant No.861152).
文摘Breathing solitons,i.e.,dynamic dissipative solitons with oscillating pulse shape and energy caused by different mechanisms of spatiotemporal instabilities,have received considerable interest from the aspects of nonlinear science and potential applications.However,by far,the study of breathing solitons is still limited within the time scale of hundreds of cavity round trips,which ignores the slow dynamics.To fill this lacuna,we theoretically investigate a new type of vector dissipative soliton breathing regime and experimentally demonstrate this concept using mode-locked fiber lasers,which arise from the desynchronization of orthogonal states of polarization(SOPs)in the form of complex oscillations of the phase difference between the states.The dynamic evolution of polarization states of the vector breathings solitons takes the form of a trajectory connecting two quasi-equilibrium orthogonal SOPs on the surface of the Poincarésphere.The dwelling time near each state is on the scale of a tenth of a thousand cavity round trip times that equals the breathing period,which is up to 2 orders of magnitude longer than that for common breathers.The obtained results can reveal concepts in nonlinear science and may unlock approaches to the flexible manipulation of laser waveforms toward various applications in spectroscopy and metrology.