Traditional email systems can only achieve one-way communication,which means only the receiver is allowed to search for emails on the email server.In this paper,we propose a blockchain-based certificateless bidirectio...Traditional email systems can only achieve one-way communication,which means only the receiver is allowed to search for emails on the email server.In this paper,we propose a blockchain-based certificateless bidirectional authenticated searchable encryption model for a cloud email system named certificateless authenticated bidirectional searchable encryption(CL-BSE)by combining the storage function of cloud server with the communication function of email server.In the new model,not only can the data receiver search for the relevant content by generating its own trapdoor,but the data owner also can retrieve the content in the same way.Meanwhile,there are dual authentication functions in our model.First,during encryption,the data owner uses the private key to authenticate their identity,ensuring that only legal owner can generate the keyword ciphertext.Second,the blockchain verifies the data owner’s identity by the received ciphertext,allowing only authorized members to store their data in the server and avoiding unnecessary storage space consumption.We obtain a formal definition of CL-BSE and formulate a specific scheme from the new system model.Then the security of the scheme is analyzed based on the formalized security model.The results demonstrate that the scheme achieves multikeyword ciphertext indistinguishability andmulti-keyword trapdoor privacy against any adversary simultaneously.In addition,performance evaluation shows that the new scheme has higher computational and communication efficiency by comparing it with some existing ones.展开更多
Cloud manufacturing is one of the three key technologies that enable intelligent manufacturing.This paper presents a novel attribute-based encryption(ABE)approach for computer-aided design(CAD)assembly models to effec...Cloud manufacturing is one of the three key technologies that enable intelligent manufacturing.This paper presents a novel attribute-based encryption(ABE)approach for computer-aided design(CAD)assembly models to effectively support hierarchical access control,integrity verification,and deformation protection for co-design scenarios in cloud manufacturing.An assembly hierarchy access tree(AHAT)is designed as the hierarchical access structure.Attribute-related ciphertext elements,which are contained in an assembly ciphertext(ACT)file,are adapted for content keys decryption instead of CAD component files.We modify the original Merkle tree(MT)and reconstruct an assembly MT.The proposed ABE framework has the ability to combine the deformation protection method with a content privacy of CAD models.The proposed encryption scheme is demonstrated to be secure under the standard assumption.Experimental simulation on typical CAD assembly models demonstrates that the proposed approach is feasible in applications.展开更多
Despite the benefits of EHRs (Electronic Health Records), there is a growing concern over the risks of privacy exposure associated with the technologies of EHR storing and transmission. To deal with this problem, a ti...Despite the benefits of EHRs (Electronic Health Records), there is a growing concern over the risks of privacy exposure associated with the technologies of EHR storing and transmission. To deal with this problem, a timeaware searchable encryption with designated server is proposed in this paper. It is based on Boneh's public key encryption with keyword search and Rivest's timed-release cryptology. Our construction has three features: the user cannot issue a keyword search query successfully unless the search falls into the specific time range;only the authorized user can generate a valid trapdoor;only the designated server can execute the search. Applying our scheme in a multi-user environment, the number of the keyword ciphertexts would not increase linearly with the number of the authorized users. The security and performance analysis shows that our proposed scheme is securer and more efficient than the existing similar schemes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62172337,62241207)Key Project of GansuNatural Science Foundation(No.23JRRA685).
文摘Traditional email systems can only achieve one-way communication,which means only the receiver is allowed to search for emails on the email server.In this paper,we propose a blockchain-based certificateless bidirectional authenticated searchable encryption model for a cloud email system named certificateless authenticated bidirectional searchable encryption(CL-BSE)by combining the storage function of cloud server with the communication function of email server.In the new model,not only can the data receiver search for the relevant content by generating its own trapdoor,but the data owner also can retrieve the content in the same way.Meanwhile,there are dual authentication functions in our model.First,during encryption,the data owner uses the private key to authenticate their identity,ensuring that only legal owner can generate the keyword ciphertext.Second,the blockchain verifies the data owner’s identity by the received ciphertext,allowing only authorized members to store their data in the server and avoiding unnecessary storage space consumption.We obtain a formal definition of CL-BSE and formulate a specific scheme from the new system model.Then the security of the scheme is analyzed based on the formalized security model.The results demonstrate that the scheme achieves multikeyword ciphertext indistinguishability andmulti-keyword trapdoor privacy against any adversary simultaneously.In addition,performance evaluation shows that the new scheme has higher computational and communication efficiency by comparing it with some existing ones.
基金supported by the National Natural Science Foundation of China(62072348)the Science and Technology Major Project of Hubei Province(Next-Generation AI Technologies,2019AEA170).
文摘Cloud manufacturing is one of the three key technologies that enable intelligent manufacturing.This paper presents a novel attribute-based encryption(ABE)approach for computer-aided design(CAD)assembly models to effectively support hierarchical access control,integrity verification,and deformation protection for co-design scenarios in cloud manufacturing.An assembly hierarchy access tree(AHAT)is designed as the hierarchical access structure.Attribute-related ciphertext elements,which are contained in an assembly ciphertext(ACT)file,are adapted for content keys decryption instead of CAD component files.We modify the original Merkle tree(MT)and reconstruct an assembly MT.The proposed ABE framework has the ability to combine the deformation protection method with a content privacy of CAD models.The proposed encryption scheme is demonstrated to be secure under the standard assumption.Experimental simulation on typical CAD assembly models demonstrates that the proposed approach is feasible in applications.
基金This study was jointly supported by the National Natural Science Foundation of China (No. 61702067, No. 61472464)the Natural Science Foundation of Shangdong Province, China (No. ZR2015FL024).
文摘Despite the benefits of EHRs (Electronic Health Records), there is a growing concern over the risks of privacy exposure associated with the technologies of EHR storing and transmission. To deal with this problem, a timeaware searchable encryption with designated server is proposed in this paper. It is based on Boneh's public key encryption with keyword search and Rivest's timed-release cryptology. Our construction has three features: the user cannot issue a keyword search query successfully unless the search falls into the specific time range;only the authorized user can generate a valid trapdoor;only the designated server can execute the search. Applying our scheme in a multi-user environment, the number of the keyword ciphertexts would not increase linearly with the number of the authorized users. The security and performance analysis shows that our proposed scheme is securer and more efficient than the existing similar schemes.