Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design princi...Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites.Distinct from sp2-conjugated graphene and carbon nanotube,fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community.For instance,the well-defined atomic and molecular structures,the good electron affinity to tune the electronic structures of other substances,the intermolecular self-assembly into superlattices,and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon ma-terials.As increasing studies are being reported on this intriguing topic,it is necessary to provide a state-of-the-art overview of the recent progress.This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives.The content is structured according to the composition and structure of fullerene,including intact fullerene(e.g.,fullerene composite and superlattices)and fullerene derivatives(e.g.,doped,endohedral,and disintegrated fullerene).The synthesis,characterization,catalytic mechanisms,and deficiencies of these fullerene-based materials are explicitly elaborated.We conclude it by sharing our perspectives on the key aspects that future efforts shall consider.展开更多
Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to po...Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance.Herein,a chlorofullerene,C_(60)Cl_(6),with six chlorine attached to the C_(60)cage,is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film.The chemical interactions between C_(60)Cl_(6)and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film.It is also revealed that the C_(60)Cl_(6)located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films,especially the oxidation of Sn^(2+)to Sn^(4+).As a result,the C_(60)Cl_(6)-based device yields a remarkably improved device efficiency from 10.03%to 13.30%with enhanced stability.This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials.展开更多
A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liqu...A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.展开更多
Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-per...Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.展开更多
A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose...A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose(NC)-based propellants.Single-crystal X-ray diffraction,nuclear magnetic resonance,highresolution mass spectrometry,Fourier transform infrared(FT-IR)spectroscopy,and UV-Vis spectroscopy were used to characterize the structures of the synthesized fullerene anisole derivative stabilizers.Methyl violet,differential scanning calorimetry test,isothermal weight loss,vacuum stability test,and adiabatic accelerated test were used to study their compatibility with NC and their ability to stabilize NC.The results show that the designed and synthesized novel fullerene anisole derivative stabilizer has good compatibility with NC,and their overall stabilizing effects on NC are better than those of the traditional stabilizers,diphenylamine(DPA),and N,N’-dimethyl-N,N’-diphenylurea(C2).The stabilizing effects was ranked as:3b>2d>2a>2c>C2>2b>DPA>NC.In addition,FT-IR analysis and electron spin resonance spectroscopy were applied to explore the stability mechanism of fullerene-based stabilizers to NC.The results reveal that the new fullerene stabilizer can adsorb and effectively eliminate the nitrogen oxide free radicals generated by NC degradation;therefore,it can forbid the autocatalytic degradation of NC and stabilize NC.展开更多
The different fullerite structures were obtained. Individual of hyperfullerene which duplicate the form of fullerene was fixed. The attempt of transcript of these structures for electron microscopy is going on.
Density functional theory (DFT) calculations on two isomers of C68 with the minimal number of fused pentagon pairs, its anions and Sc3N as well as Sc3N@C68 (6140) metallofullerene were carded out at the B3LYP/6-3...Density functional theory (DFT) calculations on two isomers of C68 with the minimal number of fused pentagon pairs, its anions and Sc3N as well as Sc3N@C68 (6140) metallofullerene were carded out at the B3LYP/6-31G^* level. The optimized configurations and electrostatic potential distributions have been obtained. The calculated results show that the electrostatic potentials of C68 (6140) inside the sphere have three minima in the middle of the double bonds at fusion of two hexagonal rings. In contrast, potential minimum Vmin(r) of C68 (6275) inside the sphere occurs at the center of the sphere. Concerning the two isomers of C68, the largest regions with the most negative MEP outside the sphere are both localized in the neighborhood of pentagon-pentagon vertex fusions. They constitute the most probable active sites in chemical reactions. Our results present a reasonable explanation for the bonding between scandium atoms and fullerene cage.展开更多
To achieve efficient polymer solar cells(PSCs)with full utilization of the whole spectrum,the multicomponent devices are of great importance to be deeply explored,especially for their capability of one-step fabricatio...To achieve efficient polymer solar cells(PSCs)with full utilization of the whole spectrum,the multicomponent devices are of great importance to be deeply explored,especially for their capability of one-step fabrication.However,the research about one same binary system simultaneously derivated various multi-component PSC is still very limited.Herein,we achieved the whole constructions from one binary host to different ternary systems and even the quaternary one.The ternary strategies with fullerene acceptor,PC_(71)BM,and non-fullerene acceptor,BT_(6)IC-BO-4Cl,as the third component,both boosted the device efficiencies of PBT4Cl-Bz:IT-4F binary system from about 9% to comparatively beyond 11%.Despite the comparable improvement of performance,there existed other similarities and differences in two ternary strategies.In detail,the isotropic carrier transport of PC_(71)BM which largely elevated the fill factor(FF)in the corresponding devices,while the strong absorption of BT_(6)IC-BO-4Cl enhanced the short current density(J_(SC))most.More interestingly,quaternary devices based on PBT4Cl-Bz:IT-4F:PC71 BM:BT_(6)IC-BO-4Cl could combine both advantages of fullerene and non-fullerene ternary strategies,further pumped the J_(SC) from 16.44 to the highest level of 19.66 mA cm^(-2) among all devices,eventually resulted in an optimized efficiency of 11.69%.It reveals that both fullerene and non-fullerene ternary strategies have their unique feature to elevate the device performance either by efficient isotropic carrier transport or better coverage of whole sunlight spectrum and easy tunable energy levels from organic materials.The key is how to integrate the two pathways in one system and provide a more competitive solution facing high-quality PSCs.展开更多
The effects of He, Ar and N2, as the working gas, on the formation of Fullerenes were studied respectively. The experimental results indicated that the different inert gases greatly affect both the productivity and t...The effects of He, Ar and N2, as the working gas, on the formation of Fullerenes were studied respectively. The experimental results indicated that the different inert gases greatly affect both the productivity and the composition of Fullerenes and for the same gas the different pressures also affect the productivity. It was also found that no Fullerenes can be obtained without a working gas. It indicates that the gas of a difinite pressure may be necessary to the formation of Fullerenes. A new possible mechanism of the Fullerenes formation was suggested.展开更多
The solvent-free mechanochemical reaction and the liquid-phase reaction of C60 with ethyl 2-diazopropionate prepared in situ or preformed from alanine ethyl ester hydrochloride and sodium nitrite have been investigate...The solvent-free mechanochemical reaction and the liquid-phase reaction of C60 with ethyl 2-diazopropionate prepared in situ or preformed from alanine ethyl ester hydrochloride and sodium nitrite have been investigated. Methanofullerene 1 and fulleroids 2 and 3 from these reactions were obtained, meanwhile the pyrazoline intermediate was not observed. Fulleroids 2 and 3 can be converted to methanofullerene 1 in refluxing toluene.展开更多
C 60 /C 70 mixture reacts with hydrazine hydrate catalysed by tetrabutylammonium bromide (TBAB) in the presence of air to afford fullerene hydrazine derivatives C 60 (OH) n(NHNH 2) n and C 70 (OH) n(NHNH 2) n,whi...C 60 /C 70 mixture reacts with hydrazine hydrate catalysed by tetrabutylammonium bromide (TBAB) in the presence of air to afford fullerene hydrazine derivatives C 60 (OH) n(NHNH 2) n and C 70 (OH) n(NHNH 2) n,which are characterized by means of MS and FTIR.A possible reaction mechanism is discussed.展开更多
基金This study is supported by the National Natural Science Foundation of China(21925104)the Natural Science Foun-dation of Hubei Province(2021CFA020)the start-up funding of Huazhong University of Science and Technology(3004110178).
文摘Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites.Distinct from sp2-conjugated graphene and carbon nanotube,fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community.For instance,the well-defined atomic and molecular structures,the good electron affinity to tune the electronic structures of other substances,the intermolecular self-assembly into superlattices,and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon ma-terials.As increasing studies are being reported on this intriguing topic,it is necessary to provide a state-of-the-art overview of the recent progress.This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives.The content is structured according to the composition and structure of fullerene,including intact fullerene(e.g.,fullerene composite and superlattices)and fullerene derivatives(e.g.,doped,endohedral,and disintegrated fullerene).The synthesis,characterization,catalytic mechanisms,and deficiencies of these fullerene-based materials are explicitly elaborated.We conclude it by sharing our perspectives on the key aspects that future efforts shall consider.
基金financially supported by the National Natural Science Foundation of China(51902110,U21A2078,and 22179042)Natural Science Foundation of Fujian Province(2020J01064 and 2020J06021)Scientific Research Funds of Huaqiao University,and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(ZQN-806,ZQNPY607)
文摘Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance.Herein,a chlorofullerene,C_(60)Cl_(6),with six chlorine attached to the C_(60)cage,is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film.The chemical interactions between C_(60)Cl_(6)and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film.It is also revealed that the C_(60)Cl_(6)located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films,especially the oxidation of Sn^(2+)to Sn^(4+).As a result,the C_(60)Cl_(6)-based device yields a remarkably improved device efficiency from 10.03%to 13.30%with enhanced stability.This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials.
文摘A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.
基金Natural Science Foundation of China (51972278)Outstanding Youth Science and Technology Talents Program of Sichuan (19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology, 21fksy19)。
文摘Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.
基金financial support received from the Natural Science Foundation of China(Grant No.51972278)Outstanding Youth Science and Technology Talents Program of Sichuan(Grant No.19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials(Southwest University of Science and Technology,Grant No.20fksy16)。
文摘A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose(NC)-based propellants.Single-crystal X-ray diffraction,nuclear magnetic resonance,highresolution mass spectrometry,Fourier transform infrared(FT-IR)spectroscopy,and UV-Vis spectroscopy were used to characterize the structures of the synthesized fullerene anisole derivative stabilizers.Methyl violet,differential scanning calorimetry test,isothermal weight loss,vacuum stability test,and adiabatic accelerated test were used to study their compatibility with NC and their ability to stabilize NC.The results show that the designed and synthesized novel fullerene anisole derivative stabilizer has good compatibility with NC,and their overall stabilizing effects on NC are better than those of the traditional stabilizers,diphenylamine(DPA),and N,N’-dimethyl-N,N’-diphenylurea(C2).The stabilizing effects was ranked as:3b>2d>2a>2c>C2>2b>DPA>NC.In addition,FT-IR analysis and electron spin resonance spectroscopy were applied to explore the stability mechanism of fullerene-based stabilizers to NC.The results reveal that the new fullerene stabilizer can adsorb and effectively eliminate the nitrogen oxide free radicals generated by NC degradation;therefore,it can forbid the autocatalytic degradation of NC and stabilize NC.
文摘The different fullerite structures were obtained. Individual of hyperfullerene which duplicate the form of fullerene was fixed. The attempt of transcript of these structures for electron microscopy is going on.
基金the Department of Education of Liaoning Province (No. 2024201057)
文摘Density functional theory (DFT) calculations on two isomers of C68 with the minimal number of fused pentagon pairs, its anions and Sc3N as well as Sc3N@C68 (6140) metallofullerene were carded out at the B3LYP/6-31G^* level. The optimized configurations and electrostatic potential distributions have been obtained. The calculated results show that the electrostatic potentials of C68 (6140) inside the sphere have three minima in the middle of the double bonds at fusion of two hexagonal rings. In contrast, potential minimum Vmin(r) of C68 (6275) inside the sphere occurs at the center of the sphere. Concerning the two isomers of C68, the largest regions with the most negative MEP outside the sphere are both localized in the neighborhood of pentagon-pentagon vertex fusions. They constitute the most probable active sites in chemical reactions. Our results present a reasonable explanation for the bonding between scandium atoms and fullerene cage.
基金the financial support by the National Natural Science Foundation of China(21733005,21975115,51773087)Shenzhen Fundamental Research Program(KQJSCX20180319114442157,JCYJ20170817111214740,JCYJ20180302180238419)+4 种基金Shenzhen Nobel Prize Scientists Laboratory Project(C17213101)Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06G587)Shenzhen Sci-Tech Fund(KYTDPT20181011104007)the supported by Center for Computational Science and Engineering at SUSTech。
文摘To achieve efficient polymer solar cells(PSCs)with full utilization of the whole spectrum,the multicomponent devices are of great importance to be deeply explored,especially for their capability of one-step fabrication.However,the research about one same binary system simultaneously derivated various multi-component PSC is still very limited.Herein,we achieved the whole constructions from one binary host to different ternary systems and even the quaternary one.The ternary strategies with fullerene acceptor,PC_(71)BM,and non-fullerene acceptor,BT_(6)IC-BO-4Cl,as the third component,both boosted the device efficiencies of PBT4Cl-Bz:IT-4F binary system from about 9% to comparatively beyond 11%.Despite the comparable improvement of performance,there existed other similarities and differences in two ternary strategies.In detail,the isotropic carrier transport of PC_(71)BM which largely elevated the fill factor(FF)in the corresponding devices,while the strong absorption of BT_(6)IC-BO-4Cl enhanced the short current density(J_(SC))most.More interestingly,quaternary devices based on PBT4Cl-Bz:IT-4F:PC71 BM:BT_(6)IC-BO-4Cl could combine both advantages of fullerene and non-fullerene ternary strategies,further pumped the J_(SC) from 16.44 to the highest level of 19.66 mA cm^(-2) among all devices,eventually resulted in an optimized efficiency of 11.69%.It reveals that both fullerene and non-fullerene ternary strategies have their unique feature to elevate the device performance either by efficient isotropic carrier transport or better coverage of whole sunlight spectrum and easy tunable energy levels from organic materials.The key is how to integrate the two pathways in one system and provide a more competitive solution facing high-quality PSCs.
文摘The effects of He, Ar and N2, as the working gas, on the formation of Fullerenes were studied respectively. The experimental results indicated that the different inert gases greatly affect both the productivity and the composition of Fullerenes and for the same gas the different pressures also affect the productivity. It was also found that no Fullerenes can be obtained without a working gas. It indicates that the gas of a difinite pressure may be necessary to the formation of Fullerenes. A new possible mechanism of the Fullerenes formation was suggested.
文摘The solvent-free mechanochemical reaction and the liquid-phase reaction of C60 with ethyl 2-diazopropionate prepared in situ or preformed from alanine ethyl ester hydrochloride and sodium nitrite have been investigated. Methanofullerene 1 and fulleroids 2 and 3 from these reactions were obtained, meanwhile the pyrazoline intermediate was not observed. Fulleroids 2 and 3 can be converted to methanofullerene 1 in refluxing toluene.
文摘C 60 /C 70 mixture reacts with hydrazine hydrate catalysed by tetrabutylammonium bromide (TBAB) in the presence of air to afford fullerene hydrazine derivatives C 60 (OH) n(NHNH 2) n and C 70 (OH) n(NHNH 2) n,which are characterized by means of MS and FTIR.A possible reaction mechanism is discussed.