Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully auto...Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.展开更多
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid...An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach.展开更多
Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop...Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam tru...Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled.展开更多
A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution...A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.展开更多
The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but t...The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but the control domain is not necessarily convex.展开更多
The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The positi...The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.展开更多
In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division m...In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy....The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy. This thesis introduces fuzzy control as the algorithm of a closed-loop control system to control the piezoelectric actuator. Fuzzy control can make this closed-looped system not only have high linearity, repeatability, accuracy and few overshoot, but isalso easily used.展开更多
Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an ...Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.展开更多
This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference ...This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.展开更多
According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management...According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management system,andpointed out that efficient safety management lies in three factors:safety quality of all ofthe staff in coal mine enterprises,weak links in security management systems,and cooperationamong departments.After conducting detailed analysis of these three factors,we proposed concrete ways of preventing and controlling potential safety hazards duringthe process of coal mine production.展开更多
According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based...According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based on the above research, one effective method by using field monitoring was brought forward to determine the controlling factor. Then some related key technologies were provided, such as keeping the integrality of the top-coal, raising the horizontal resistance of supports and decreasing the real end-face distance etc.. At last one application of this method was presented, and it was proved to be an effective method.展开更多
The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we prop...The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.展开更多
To meet the demands for highly advanced components with ultra precise contour accuracy and optical surface quality arising in the fields of photonics and optics, automotive, medical applications and biotechnology, con...To meet the demands for highly advanced components with ultra precise contour accuracy and optical surface quality arising in the fields of photonics and optics, automotive, medical applications and biotechnology, consumer electronics and renewable energy, more advanced production machines and processes have to be developed. As the complexity of machine tools rises steadily, the automation of manufacture increases rapidly, processes become more integrated and cycle times have to be reduced significantly, challenges of engineering efficient machine tools with respect to these demands expand every day. Especially the manufacture of freeform geometries with non-continuous and asymmetric surfaces requires advanced diamond machining strategies involving highly dynamic axes movements with a high bandwidth and position accuracy. Ultra precision lathes additionally equipped with Slow Tool and Fast Tool systems can be regarded as state-of-the-art machines achieving the objectives of high quality optical components. The mechanical design of such ultra precision machine tools as well as the mechanical integration of additional highly dynamic axes are very well understood today. In contrast to that, neither advanced control strategies for ultra precision machining nor the control integration of additional Fast Tool systems have been sufficiently developed yet. Considering a complex machine setup as a mechatronic system, it becomes obvious that enhancements to further increase the achievable form accuracy and surface quality and at the same time decrease cycle times and error sensitivity can only be accomplished by innovative, integrated control systems. At the Fraunhofer Institute for Production Technology IPT a novel, fully integrated control approach has been developed to overcome the drawbacks of state-of-the-art machine controls for ultra precision processes. Current control systems are often realized as decentralized solutions consisting of various computational hardware components for setpoint generation, machine control, HMI (human machine interface), Slow Tool control and Fast Tool control. While implementing such a distributed control strategy, many disadvantages arise in terms of complex communication interfaces, discontinuous safety structures, synchronization of cycle times and the machining accuracy as a whole. The novel control approach has been developed as a fully integrated machine control including standard CNC (computer numerical control) and PLC (programmable logic controller) functionality, advanced setpoint generation methods, an extended HMI as well as an FPGA (field programmable gate array)-based controller for a voice coil driven Slow Tool and a piezo driven Fast Tool axis. As the new control system has been implemented as a fully integrated platform using digital communication via EtherCAT, a continuous safety strategy could be realized, the error sensitivity and EMC susceptibility could be significantly decreased and the overall process accuracy from setpoint generation over path interpolation to axes movements could be enhanced. The novel control at the same time offers additional possibilities of automation, process integration, online data acquisition and evaluation as well as error compensation methods.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
基金supported by the National Natural Science Foundation of China(72071143)。
文摘Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金supported by the China Postdoctoral Science Foundation (200904501035 201003548)+3 种基金the National Natural Science Foundation of China (60835001907160289101600460804017)
文摘An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach.
文摘Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
基金the National Natrual Science Foundation of China(50504014)
文摘Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled.
基金funded by the National Natural Science Foundation of China(No.51374201,51323004)the State Key Development Program for Basic Research of China(No.2013CB227900)the College Student’s Program for Innovation of China University of Mining and Technology of China(No.201507)
文摘A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.
基金Supported by National Natural Science Foundation of P.R.China (10371067) the Youth Teacher Foundation of Fok Ying Tung Education Foundation (91064)New Century Excellent Young Teachers Foundation of P. R. China (NCEF-04-0633)
文摘The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but the control domain is not necessarily convex.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.
文摘In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
文摘The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy. This thesis introduces fuzzy control as the algorithm of a closed-loop control system to control the piezoelectric actuator. Fuzzy control can make this closed-looped system not only have high linearity, repeatability, accuracy and few overshoot, but isalso easily used.
基金Supported by the National Basic Research Program of China (2010CB731800)the National Natural Science Foundation of China (60974059, 60736026, 61021063, 60904044, 61290324)Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation
文摘Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61233002)the 111 Project(Grant No.B16009)the IAPI Fundamental Research Funds(Grant No.2013ZCX03-01)
文摘This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.
文摘According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management system,andpointed out that efficient safety management lies in three factors:safety quality of all ofthe staff in coal mine enterprises,weak links in security management systems,and cooperationamong departments.After conducting detailed analysis of these three factors,we proposed concrete ways of preventing and controlling potential safety hazards duringthe process of coal mine production.
文摘According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based on the above research, one effective method by using field monitoring was brought forward to determine the controlling factor. Then some related key technologies were provided, such as keeping the integrality of the top-coal, raising the horizontal resistance of supports and decreasing the real end-face distance etc.. At last one application of this method was presented, and it was proved to be an effective method.
文摘The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.
文摘To meet the demands for highly advanced components with ultra precise contour accuracy and optical surface quality arising in the fields of photonics and optics, automotive, medical applications and biotechnology, consumer electronics and renewable energy, more advanced production machines and processes have to be developed. As the complexity of machine tools rises steadily, the automation of manufacture increases rapidly, processes become more integrated and cycle times have to be reduced significantly, challenges of engineering efficient machine tools with respect to these demands expand every day. Especially the manufacture of freeform geometries with non-continuous and asymmetric surfaces requires advanced diamond machining strategies involving highly dynamic axes movements with a high bandwidth and position accuracy. Ultra precision lathes additionally equipped with Slow Tool and Fast Tool systems can be regarded as state-of-the-art machines achieving the objectives of high quality optical components. The mechanical design of such ultra precision machine tools as well as the mechanical integration of additional highly dynamic axes are very well understood today. In contrast to that, neither advanced control strategies for ultra precision machining nor the control integration of additional Fast Tool systems have been sufficiently developed yet. Considering a complex machine setup as a mechatronic system, it becomes obvious that enhancements to further increase the achievable form accuracy and surface quality and at the same time decrease cycle times and error sensitivity can only be accomplished by innovative, integrated control systems. At the Fraunhofer Institute for Production Technology IPT a novel, fully integrated control approach has been developed to overcome the drawbacks of state-of-the-art machine controls for ultra precision processes. Current control systems are often realized as decentralized solutions consisting of various computational hardware components for setpoint generation, machine control, HMI (human machine interface), Slow Tool control and Fast Tool control. While implementing such a distributed control strategy, many disadvantages arise in terms of complex communication interfaces, discontinuous safety structures, synchronization of cycle times and the machining accuracy as a whole. The novel control approach has been developed as a fully integrated machine control including standard CNC (computer numerical control) and PLC (programmable logic controller) functionality, advanced setpoint generation methods, an extended HMI as well as an FPGA (field programmable gate array)-based controller for a voice coil driven Slow Tool and a piezo driven Fast Tool axis. As the new control system has been implemented as a fully integrated platform using digital communication via EtherCAT, a continuous safety strategy could be realized, the error sensitivity and EMC susceptibility could be significantly decreased and the overall process accuracy from setpoint generation over path interpolation to axes movements could be enhanced. The novel control at the same time offers additional possibilities of automation, process integration, online data acquisition and evaluation as well as error compensation methods.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.