期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
A thermo-mechanical damage constitutive model for deep rock considering brittleness-ductility transition characteristics
1
作者 FENG Chen-chen WANG Zhi-liang +2 位作者 WANG Jian-guo LU Zhi-tang LI Song-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2379-2392,共14页
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi... This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications. 展开更多
关键词 deep rock crack initiation threshold thermo-mechanical coupling statistical damage model distortion energy theory
下载PDF
Thermo-mechanical coupled particle model for rock 被引量:6
2
作者 夏明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2367-2379,共13页
A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analy... A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analytical solutions are available,demonstrate the correctness and usefulness of the thermo-mechanical coupled particle model.This model is applied to simulating an application example with two cases:one is temperature-independent elastic modulus and strength,while the other is temperature-dependent elastic modulus and strength.The related simulation results demonstrate that microscopic crack initiation and propagation process with consideration of temperature-independent and temperature-dependent elastic modulus and strength are different and therefore,the corresponding macroscopic failure patterns of rock are also different.On the contrary,considering the temperature-dependent elastic modulus and strength has no or little effect on the heating conduction behavior.Numerical results,which are obtained by using the proposed model with temperature-dependent elastic modulus and strength,agree well with the experimental results.This also reveals that the rock subjected to heating experiences much more cracking than the rock subjected to cooling. 展开更多
关键词 particle simulation method MICROMECHANICS rock fracture thermo-mechanical coupled model
下载PDF
Numerical modeling of coupled thermo-mechanical response of a rock pillar 被引量:2
3
作者 Yifeng Chen Chuangbing Zhou Lanru Jing 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期262-273,共12页
Understanding the rock mass response to excavation and thermal loading and improving the capability of the numerical models for simulating the progressive failure process of brittle rocks are important for safety asse... Understanding the rock mass response to excavation and thermal loading and improving the capability of the numerical models for simulating the progressive failure process of brittle rocks are important for safety assessment and optimization design of nuclear waste repositories.The international cooperative DECOVALEX-2011 project provides a platform for development,validation and comparison of numerical models,in which the sp pillar stability experiment(APSE) was selected as the modeling target for Task B.This paper presents the modeling results of Wuhan University(WHU) team for stages 1 and 2 of Task B by using a coupled thermo-mechanical model within the framework of continuum mechanics.The rock mass response to excavation is modeled with linear elastic,elastoplastic and brittle-plastic models,while the response to heating is modeled with a coupled thermo-elastic model.The capabilities and limitations of the model for representation of the thermo-mechanical responses of the rock pillar are discussed by comparing the modeling results with experimental observations.The results may provide a helpful reference for the stability and safety assessment of the hard granite host rock in China's Beishan preselected area for high-level radioactive waste disposal. 展开更多
关键词 thermo-mechanical coupling sp pillar stability experiment(ASPE) numerical modeling DECOVALEX-2011 project
下载PDF
Shear behavior of intact granite under thermo-mechanical coupling and three-dimensional morphology of shear-formed fractures 被引量:1
4
作者 Bing Chen Baotang Shen Haiyang Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期523-537,共15页
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear... The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified. 展开更多
关键词 thermo-mechanical(TM)coupling Peak shear strength Three-dimensional(3D)morphological characterization Failure mode Quadrangular pyramid model
下载PDF
Study on inhomogeneous cooling behavior of extruded profile with unequal and large thicknesses during quenching using thermo-mechanical coupling model 被引量:6
5
作者 Zhi-wen LIU Jie YI +3 位作者 Shi-kang LI Wen-jie NIE Luo-xing LI Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1211-1226,共16页
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica... The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°. 展开更多
关键词 aluminum profile unequal and large thicknesses water quenching heat transfer coefficient thermo-mechanical coupling model
下载PDF
Fully Coupled Fluid-Structure Interaction Model Based on Distributed Lagrange Multiplier/Fictitious Domain Method
6
作者 及春宁 董晓强 +1 位作者 赵冲久 王元战 《China Ocean Engineering》 SCIE EI 2007年第3期439-450,共12页
This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the... This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure' s rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multipher/Fictitious Domain (DLM/ FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity. 展开更多
关键词 fluid-structure interaction fully coupled model distributed Lagrange multiplier/fictitious domain method numerical wave tank
下载PDF
Hydrodynamic Response of A Fully Coupled TLP Hull-TTR System with Detailed Modeling of A Hydraulic Pneumatic Tensioner and Riser Joints
7
作者 HAO Shuai YU Yang +2 位作者 YU Jian-xing YUAN Zhi-ming XU Li-xin 《China Ocean Engineering》 SCIE EI CSCD 2022年第3期451-463,共13页
Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull... Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model. 展开更多
关键词 top tension riser(TTR) fully coupled hull-tendon-TTR-tensioner model hydraulic pneumatic tensioner hydrodynamic response 3D potential flow theory
下载PDF
页岩气老井重复压裂时机优化方法
8
作者 王强 赵金洲 +2 位作者 胡永全 李勇明 王玉丰 《石油勘探与开发》 EI CSCD 北大核心 2024年第1期190-198,共9页
基于多孔介质弹性理论、嵌入式离散裂缝模型及有限体积法,考虑页岩气微观渗流机制,建立适用于裂缝性页岩气储集层的渗流-地质力学全耦合模型,并提出了重复压裂时机优化方法,采用四川盆地涪陵页岩气井资料分析了重复压裂时机的影响因素... 基于多孔介质弹性理论、嵌入式离散裂缝模型及有限体积法,考虑页岩气微观渗流机制,建立适用于裂缝性页岩气储集层的渗流-地质力学全耦合模型,并提出了重复压裂时机优化方法,采用四川盆地涪陵页岩气井资料分析了重复压裂时机的影响因素。研究表明:受地层压力衰竭影响,最大水平主应力反转面积占总面积的百分比随时间的延长先增加后减小,且距人工裂缝越近的区域,应力反转面积百分比曲线出现峰值的时间越短,最终归零(恢复到初始状态)的时间也越短。重复压裂的最佳时间受基质渗透率、初始应力差、天然裂缝逼近角的影响:基质渗透率、初始应力差越大,应力反转面积百分比曲线出现峰值、恢复到初始状态的时间越短,采取重复压裂措施的时机越早。天然裂缝逼近角越大,裂缝附近越难发生应力反转、重复压裂最佳时间越早,人工裂缝末端以远区域越易发生应力反转、重复压裂最佳时间越晚。对于基质渗透率很小的储集层,其单井产能递减快,为保证经济性,可采取关井或注气补能等措施恢复应力,提前实施重复压裂。 展开更多
关键词 页岩气井 渗流-地质力学全耦合模型 重复压裂 时机优化 影响因素
下载PDF
基于Hoek-Brown准则的岩体高温-荷载耦合损伤模型及其验证
9
作者 姜谙男 黄炫茜 +1 位作者 许梦飞 蒋浩鹏 《沈阳工业大学学报》 CAS 北大核心 2024年第4期442-448,共7页
针对隧道岩体在高温和荷载共同作用下产生的耦合损伤问题,基于连续损伤力学理论,引入高温-荷载耦合损伤因子,建立了考虑高温作用的广义Hoek-Brown(H-B)准则的弹塑性损伤本构模型,解决了模型在数值积分过程中的奇异点问题,并利用Fortran... 针对隧道岩体在高温和荷载共同作用下产生的耦合损伤问题,基于连续损伤力学理论,引入高温-荷载耦合损伤因子,建立了考虑高温作用的广义Hoek-Brown(H-B)准则的弹塑性损伤本构模型,解决了模型在数值积分过程中的奇异点问题,并利用Fortran语言编写了模型的有限元程序。结果表明:模型计算的应力-应变曲线与试验所得到的曲线趋势一致且计算结果误差在5%以内,温度作用下隧洞围岩损伤逐渐加剧,验证了模型的准确性和程序的稳健性,可为火灾作用下隧道围岩安全稳定性评价提供一种有效计算方法。 展开更多
关键词 广义Hoek-Brown准则 耦合损伤模型 完全隐式应力返回映射算法 弹塑性模型 高温-荷载耦合 单轴压缩试验 应力-应变曲线 隧洞
下载PDF
Atom-continuum coupled model for thermo-mechanical behavior of materials in micro-nano scales 被引量:5
10
作者 XIANG MeiZhen CUI JunZhi +1 位作者 LI BoWen TIAN Xia 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第6期1125-1137,共13页
In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of ma... In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work. 展开更多
关键词 atom-continuum coupled (ACC) model atomistic model thermo-mechanical behaviors NONLOCALITY multiscale model
原文传递
Mathematical model of coupled thermo-mechanical behavior during plane strain compression of 06Cr19Ni9NbN steel 被引量:1
11
作者 Yong-xing Jiao Yue Xu +2 位作者 Jian-sheng Liu Jing-dan Li Xiu-zhi Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第11期1179-1188,共10页
The process of plane strain compression of 06Cr19Ni9NbN steel was carried out in the temperature range of 1000-1200℃ and the reduction ratio range of 10-50%.Combining the finite element numerical simulation,a new con... The process of plane strain compression of 06Cr19Ni9NbN steel was carried out in the temperature range of 1000-1200℃ and the reduction ratio range of 10-50%.Combining the finite element numerical simulation,a new constitutive model of thermal deformation was established, which provides the theoretical basis to optimize the plarie strain compression process of the steel.The temperature and grain size at different regions were achieved by experiment and simulation,respectively.According to the results,the mathematical models of stress and temperature during the plane strain compression were established by mathematical analysis method.The new temperature models were established in three regions,respectively,and the stress models took account of the variation of temperature and'st^rain rate.Finally,by comparing the results of calculation,numerical simulation and experiment,the accuracy and validity of these mathematical models were verified. 展开更多
关键词 PLANE STRAIN compression coupled thermo-mechanical BEHAVIOR 06Cr19Ni9NbN STEEL Numerical simulation MATHEMATICAL model
原文传递
半潜式养殖网箱全耦合数值模型及其在规则波下的动力响应特性
12
作者 毕鑫嗣 张显涛 +3 位作者 朱云龙 周春华 张雪燕 王瀚彬! 《船舶工程》 CSCD 北大核心 2024年第5期6-16,67,共12页
随着水产养殖从近海至深远海的发展,具有抵抗恶劣海况能力的新型半潜式养殖网箱被相继设计和制造,研究其水动力性能具有重要的工程意义。基于势流理论和莫里森模型,结合三维面元法和有限元法建立半潜式养殖网箱主体框架-网衣-系泊系统... 随着水产养殖从近海至深远海的发展,具有抵抗恶劣海况能力的新型半潜式养殖网箱被相继设计和制造,研究其水动力性能具有重要的工程意义。基于势流理论和莫里森模型,结合三维面元法和有限元法建立半潜式养殖网箱主体框架-网衣-系泊系统全耦合数值模型,在验证数值模拟的可靠性后,分析规则波下网箱的水动力响应与结构应力响应,重点关注网箱各部分的相对运动。结果表明,网箱的运动由慢漂运动和波频运动两部分组成,其中慢漂运动会造成平衡位置的偏置;在波浪传播方向上,框架中同一高度处的节点几乎不发生相对运动,而不同高度处的节点由于竖向梁的旋转和弯曲而存在相对错位;侧向网衣中心区域存在较大的结构变形,从而导致了柔性网衣与主体框架存在较大的相对运动。此外,还分析了波浪参数和网衣密实度对网箱运动的影响。研究成果可为半潜式养殖网箱数值模拟方法提供一定参考。 展开更多
关键词 半潜式网箱 全耦合数值模型 水动力响应 结构响应 相对运动
下载PDF
基于全耦合模型的海上吊装作业动力响应特征研究
13
作者 车巨鹏 宋宪仓 +1 位作者 陶伟 王树青 《海洋工程》 CSCD 北大核心 2024年第2期80-92,共13页
针对现有海上吊装模拟方法不能有效考虑浮吊船舶—系泊系统—吊物系统之间的动态耦合,难以实现基座回转、吊臂变幅连续模拟问题,基于Matlab/Simulink、ADAMS联合仿真平台建立了海上吊装作业全耦合动力分析模型,探究了中长周期波作用下... 针对现有海上吊装模拟方法不能有效考虑浮吊船舶—系泊系统—吊物系统之间的动态耦合,难以实现基座回转、吊臂变幅连续模拟问题,基于Matlab/Simulink、ADAMS联合仿真平台建立了海上吊装作业全耦合动力分析模型,探究了中长周期波作用下波浪周期、吊缆收放、基座回转、吊臂变幅等参数变化对吊装作业系统动力响应的影响规律。结果表明,波浪周期接近吊物系统固有周期时会引发共振,导致吊物摇摆幅值显著增加。基座回转、吊臂变幅等因改变了吊物的空间位置从而引发了浮吊船舶倾覆力矩的变化,进而对浮吊船舶运动响应产生显著影响。当基座回转90°后,浮吊船舶的横倾角增加约2.74°。 展开更多
关键词 海上吊装作业 全耦合分析模型 动力响应特性 大幅摇摆运动 中长周期波浪
下载PDF
Multi-Fidelity Simulation of Gas Turbine Overall Performance by Directly Coupling High-Fidelity Models of Multiple Rotating Components
14
作者 DENG Weimin XU Yibing +3 位作者 NI Ming WEI Zuojun GAN Xiaohua REN Guangming 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1357-1378,共22页
Multi-fidelity simulations incorporate computational fluid dynamics(CFD) models into a thermodynamic model,enabling the simulation of the overall performance of an entire gas turbine with high-fidelity components.Trad... Multi-fidelity simulations incorporate computational fluid dynamics(CFD) models into a thermodynamic model,enabling the simulation of the overall performance of an entire gas turbine with high-fidelity components.Traditional iterative coupled methods rely on characteristic maps,while fully coupled methods directly incorporate high-fidelity simulations.However,fully coupled methods face challenges in simulating rotating components,including weak convergence and complex implementation.To address these challenges,a fully coupled method with logarithmic transformations was developed to directly integrate high-fidelity CFD models of multiple rotating components.The developed fully coupled method was then applied to evaluate the overall performance of a KJ66 micro gas turbine across various off-design simulations.The developed fully coupled method was also compared with the traditional iterative coupled method.Furthermore,experimental data from ground tests were conducted to verify its effectiveness.The convergence history indicated that the proposed fully coupled method exhibited stable convergence,even under far-off-design simulations.The experimental verification demonstrated that the multi-fidelity simulation with the fully coupled method achieved high accuracy in off-design conditions.Further analysis revealed inherent differences in the coupling methods of CFD models between the developed fully coupled and traditional iterative coupled methods.These inherent differences provide valuable insights for reducing errors between the component-level model and CFD models in different coupling methods.The developed fully coupled method,introducing logarithmic transformations,offers more realistic support for the detailed and optimal design of high-fidelity rotating components within the overall performance platform of gas turbines. 展开更多
关键词 multi-fidelity fully coupled method iterative coupled method gas turbine component-level model
原文传递
Optimization method of refracturing timing for old shale gas wells
15
作者 WANG Qiang ZHAO Jinzhou +2 位作者 HU Yongquan LI Yongming WANG Yufeng 《Petroleum Exploration and Development》 SCIE 2024年第1期213-222,共10页
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f... Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance. 展开更多
关键词 shale gas well fully coupled seepage-geomechanical model REFRACTURING timing optimization influencing factor
下载PDF
Studying the performance of fully encapsulated rock bolts with modified structural elements 被引量:2
16
作者 Jianhang Chen Hongbao Zhao +2 位作者 Fulian He Junwen Zhang Kangming Tao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期64-76,共13页
Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.I... Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end. 展开更多
关键词 fully encapsulated rock bolts Numerical simulation Structural elements Shear coupling model Interface shear strength
下载PDF
磁致伸缩振动能量收集器的全耦合非线性等效电路模型 被引量:2
17
作者 黄文美 刘泽群 +2 位作者 郭万里 薛天祥 翁玲 《电工技术学报》 EI CSCD 北大核心 2023年第15期4076-4086,共11页
磁致伸缩材料具有应变大、响应速度快、稳定性好、频带宽的特点,是制作振动能量收集器的理想材料。当前磁致伸缩振动能量收集器建模主要利用线性压磁方程,此模型未能从材料自身耦合和磁路结构进行输出分析,导致输出预测误差较大。该文... 磁致伸缩材料具有应变大、响应速度快、稳定性好、频带宽的特点,是制作振动能量收集器的理想材料。当前磁致伸缩振动能量收集器建模主要利用线性压磁方程,此模型未能从材料自身耦合和磁路结构进行输出分析,导致输出预测误差较大。该文首先搭建了磁致伸缩材料磁特性测试装置,测试分析了磁致伸缩材料Galfenol合金在不同压应力尤其是大幅值应力下的磁特性;然后基于Gibbs自由能推导了Galfenol材料的全耦合非线性本构方程,进而构建了考虑漏磁、非线性、机磁耦合及饱和效应的振动能量收集器的等效电路模型,并对等效电路模型进行了非线性数学表征和参数识别;最后基于Galfenol材料设计了一个可以承受大幅值振动力的双棒型振动能量收集器样机,通过实验研究了收集器输出电压在不同力幅值、力频率、负载阻值等工况下的变化规律。实验结果与模型的计算结果对比分析表明,所建立的全耦合非线性等效电路模型可以准确预测振动能量收集器的输出电压特性。 展开更多
关键词 振动能量收集器 Galfenol合金 全耦合非线性模型 等效电路 输出特性分析
下载PDF
Research on Robotized Advance Support and Supporting Time for Deep Fully Mechanized Excavation Roadway
18
作者 LI Sanxi QIAO Hongbing XUE Guanghui 《Instrumentation》 2021年第1期61-73,共13页
To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit... To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit.The existing research shows that the surrounding rock of the roadway has self-stability,and the early or late support is not conducive to the safe and reliable support of the roadway,so there is a problem of support opportunity.In order to study the supporting effect and the optimal supporting time of the above solution,we established the mechanical coupling model of surrounding rock and advance support,and investigated the surrounding rock deformation and advance support pressure distribution under different reserved roof subsidence by using the numerical simulation software FLAC3D.The results show that the deformation of surrounding rock increases and finally tends to a stable level with the increase of pre settlement of roadway roof,and when the pre settlement of roof is between 8-15 mm,the vertical pressure of the top beam of advance support reaches the minimum value,about 0.58 MPa.Based on the above research,we put forward the optimum supporting time in roadway excavation,and summarized the evaluation method based on the mechanical coupling model of surrounding rock-advance support. 展开更多
关键词 Coalmine Safety Robotized Advance Support Optimum Supporting Time Deep fully Mechanized Excavation Roadway Mechanical coupling model
下载PDF
考虑桨叶伺服控制的浮式风机多刚体动力学建模与验证 被引量:1
19
作者 刘增辉 陈建兵 +1 位作者 宋玉鹏 张自立 《振动工程学报》 EI CSCD 北大核心 2023年第4期892-902,共11页
浮式风机是深远海域风力发电的关键结构,分析其在复杂海况下的动力学响应特征对保障远海风能开发具有重要意义。在初步设计和方案比选阶段,需要开发能够定量把握浮式风机动力学主要特征、且分析高效的一体化分析模型。为此,针对大型Spa... 浮式风机是深远海域风力发电的关键结构,分析其在复杂海况下的动力学响应特征对保障远海风能开发具有重要意义。在初步设计和方案比选阶段,需要开发能够定量把握浮式风机动力学主要特征、且分析高效的一体化分析模型。为此,针对大型Spar式海上浮式风机,建立了多刚体动力学全耦合分析模型。基于Lagrange方程,推导了考虑桨叶转动与桨距控制的8自由度刚体运动方程。结合所建议的多刚体模型,基于Spar式浮式风机1∶50缩尺模型试验实测数据,建立了与试验物理模型相应的一体化多刚体数值模型,并进行了静力、纯风、纯浪以及风-浪联合条件下数值分析结果与试验观测结果的对比分析。采用本文建模理论,建立了OC3-Spar式浮式风机足尺结构数值分析模型,并与常用的风机结构分析软件FAST的计算结果进行了对比分析。通过与上述缩尺物理模型试验和足尺数值模型软件分析对比,验证了浮式风机多刚体动力学分析模型的有效性。 展开更多
关键词 浮式风机 多刚体动力学模型 全耦合模型 模型试验 试验验证 数值验证
下载PDF
考虑桩基础柔性的地震风浪作用下海上风力机结构耦合响应机理研究 被引量:1
20
作者 柳英洲 王文华 +2 位作者 李昕 宋雨果 李颖 《太阳能学报》 EI CAS CSCD 北大核心 2023年第3期67-76,共10页
基于FAST海上风力机整体耦合分析理论和桩基线性化理论,建立包含桩基础柔性的海上风力机基础结构的整体耦合运动方程。进而,通过对FAST v8进行二次开发,同时考虑桩基础柔性,建立包括转子机舱组件-风力机塔筒-基础结构的海上风力机在地... 基于FAST海上风力机整体耦合分析理论和桩基线性化理论,建立包含桩基础柔性的海上风力机基础结构的整体耦合运动方程。进而,通过对FAST v8进行二次开发,同时考虑桩基础柔性,建立包括转子机舱组件-风力机塔筒-基础结构的海上风力机在地震、风、浪荷载作用下的结构耦合仿真模型。根据建立的整体耦合数值仿真模型,开展地震、风、浪荷载联合作用下海上风力机动力响应研究,着重探讨桩基础柔性对于海上风力机结构在地震组合工况下的动力特性及耦合响应机理的影响。结果表明,桩基础柔性对于海上风力机结构动力特性有显著影响。与耦合弹簧边界相比,当忽略桩基础柔性时,会低估整体结构二阶频率对于地震作用下塔顶位移响应的影响,并在基底倾覆力矩响应中激发高阶模态,造成海上风力机结构动力响应变化规律的显著差异。因此,在海上风力机结构抗震设计与研究中必须考虑桩基础柔性的影响。 展开更多
关键词 海上风力机 桩基础 土-结构相互作用 地震响应 整体耦合模型
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部