期刊文献+
共找到3,332篇文章
< 1 2 167 >
每页显示 20 50 100
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model 被引量:1
1
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam fully mechanized top coal caving Support strength Support-surrounding rock interaction
下载PDF
Hydraulic support stability control of fully mechanized top coal caving face with steep coal seams based on instable critical angle 被引量:2
2
作者 屠世浩 袁永 +2 位作者 李乃梁 窦凤金 王方田 《Journal of Coal Science & Engineering(China)》 2008年第3期382-385,共4页
Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam tru... Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled. 展开更多
关键词 steep coal seams instable critical angle support stability fully mechanized top coal caving control technology
下载PDF
Back-and-forth mining for hard and thick coal seams—research about the mining technology for fully mechanized caving working face of Datong Mine
3
作者 金智新 于红 +1 位作者 于斌 宋华岭 《Journal of Coal Science & Engineering(China)》 2005年第2期1-4,共4页
The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the s... The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further. 展开更多
关键词 hard and thick coal seams fully mechanized caving working face back-and- forth mining
下载PDF
Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application 被引量:6
4
作者 Zhang Jiangong Miao Xiexing +1 位作者 Huang Yanli Li Meng 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期349-352,共4页
Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ... Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam. 展开更多
关键词 Super-thick shallow coal seam fully mechanized top-caving mining Main roof Fracture mechanics model0
下载PDF
Deformation mechanism of surrounding rocks and key control technology for a roadway driven along goaf in fully mechanized top-coal caving face 被引量:10
5
作者 李学华 《Journal of Coal Science & Engineering(China)》 2003年第1期28-32,共5页
The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculat... The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward. 展开更多
关键词 moderate stability gob side entry driving in a fully mechanized top coal caving face stress deformation bolting support
下载PDF
Analysis and key control technologies to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines 被引量:7
6
作者 QIN Bo-tao SUN Qing-guo +2 位作者 WANG De-ming ZHANG Lei-lin XU Qin 《Mining Science and Technology》 EI CAS 2009年第4期446-451,共6页
In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain ... In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines. 展开更多
关键词 deep mine fully mechanized caving face with large obliquity spontaneous coal combustion
下载PDF
Application of deep borehole blasting on fully mechanized hard top-coal pre-splitting and gas extraction in the special thick seam 被引量:3
7
作者 Liu Jian Liu Zegong +2 位作者 Xue Junhua Gao Kui Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期755-760,共6页
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas... In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable. 展开更多
关键词 Deep borehole blasting fully mechanized mining Hard thick coal seam Top-coal pre-splitting Gas extraction
下载PDF
Statistic constitutive equation of top-coal damage for fully mechanized coal face with sublevel caving 被引量:2
8
作者 翟新献 《Journal of Coal Science & Engineering(China)》 2008年第1期6-11,共6页
Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic m... Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic mass to non-continuum plastic mass contained fissures,become a loose body.According to its bearing characteristics and mechanical properties,top-coal mass can be divided into four deformation zones along the winning direction of CFSC,i.e.initial stress zone,elastic zone,plastic zone and loose zone.Top-coal in plastic zone located in the post-peak zone of the stress-strain curve for top-coal.With equivalent strain principle of damage mechanics and mathemati- cal theory of statistic,combining the movement law of top-coal,set up a constitutive equa- tion with damage statistics for top-coal in different position in CFSC.The equation illus- trated the mathematical relationship among top-coal bearing capacity,horizontal confining pressure along the winning direction of CFSC and mechanical properties of top-coal mate- rial.The conclusions not only provide a basis for numerical computer simulations on damage deformation and failure mechanism for top-coal,but also further promote the ap- plication of damage mechanics in CFSC. 展开更多
关键词 coal seam fully mechanized coal face with sublevel caving (CFSC) top-coaldamage constitutive equation
下载PDF
Underground pressure appearance laws analysis for fully mechanized top coal slice caving on high-dipping thick coal seams 被引量:2
9
作者 YANG Sheng-li CAO Guang-ming LI Fu-sheng 《Journal of Coal Science & Engineering(China)》 2011年第1期6-11,共6页
Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete eleme... Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip. 展开更多
关键词 steeply inclined and extremely thick coal seam horizontal fully mechanized top coal slice caving undergroundpressure numerical calculation
下载PDF
Study on Filling Cross-Roadway in Fully-Mechanized Coal Faces with High Water-Content Material 被引量:1
10
作者 周华强 王光伟 +2 位作者 雷文成 曲庆贺 李峰 《Journal of China University of Mining and Technology》 2001年第2期113-117,共5页
A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compou... A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition. 展开更多
关键词 fully mechanized coal face cross roadway high water content material FILLING artificial bottom
下载PDF
Numerical simulation of coal wall cutting and lump coal formation in a fully mechanized mining face
11
作者 Yong Yuan Shengzhi Wang +1 位作者 Wenmiao Wang Cheng Zhu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1371-1383,共13页
It is difficult to accurately calculate the lump coal rate in a fully mechanized mining face.Therefore,a numerical simulation of the coal wall cutting process,which revealed the crack expansion,development,evolution i... It is difficult to accurately calculate the lump coal rate in a fully mechanized mining face.Therefore,a numerical simulation of the coal wall cutting process,which revealed the crack expansion,development,evolution in the coal body and the corresponding lump coal formation mechanism,was performed in PFC2D.Moreover,a correlation was established between the cutting force and lump coal formation,and a statistical analysis method was proposed to determine the lump coal rate.The following conclusions are drawn from the results:(1)Based on a soft ball model,a coal wall cutting model is established.By setting the roller parameters based on linear bonding and simulating the roller cutting process of the coal body,the coal wall cutting process is effectively simulated,and accurate lump coal rate statistics are provided.(2)Under the cutting stress,the coal body in the working face underwent three stages—microfracture generation,fracture expansion,and fracture penetration—to form lump coal,in which the fracture direction is orthogonal to the cutting pressure chain.Within a certain range from the roller,as the cutting depth of the roller increased,the number of new fractures in the coal body first increases and then stabilizes.(3)Under the cutting stress,the fractured coal body is locally compressed,thereby forming a compact core.The formation and destruction of the compact core causes fluctuations in the cutting force.The fluctuation amplitude is positively related to the coal mass.(4)Because the simulation does not consider secondary damage in the coal,the simulated lump coal rate is larger than the actual lump coal rate in the working face;this deviation is mainly concentrated in large lump coal with a diameter greater than 300 mm. 展开更多
关键词 fully mechanized face Lump coal rate Fracture evolution Cutting force Particle flow simulation
下载PDF
Development and prospect on fully mechanized mining in Chinese coal mines 被引量:104
12
作者 Jinhua Wang 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期253-260,共8页
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de... Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward. 展开更多
关键词 fully mechanized mining Mining with large shear height fully mechanized top coal caving Steeply inclined seam Back filling mining PROSPECT
下载PDF
Study of mechanical principle of floor heave of roadway driving along next goaf in fully mechanized sub-level caving face 被引量:7
13
作者 王卫军 侯朝炯 《Journal of Coal Science & Engineering(China)》 2001年第1期13-17,共5页
Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata ... Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending. 展开更多
关键词 floor heave roadway driving along next goaf in coal face with fully mechanized top coal caving mechanical principle
下载PDF
Reliability analysis of the velocity matching of coal cutting and caving in fully mechanized top-coal caving face
14
作者 罗善明 缪协兴 《Journal of Coal Science & Engineering(China)》 2002年第1期68-72,共5页
The matching relationship between coal cutting and caving in fully mechanized top-coal caving face is analyzed in detail from the angle of reliability. The coupling equation of reliability is established corresponding... The matching relationship between coal cutting and caving in fully mechanized top-coal caving face is analyzed in detail from the angle of reliability. The coupling equation of reliability is established correspondingly, and the mathematical equation of the coefficient of velocity matching of coal cutting and caving is obtained, which meets a certain reliability demand for making the working procedure of coal caving not influence coal cutting of coal-cutter. The results show that the relationship between the coefficient of the velocity matching and the reliability of coal cutting and caving system is linear on the whole when R <0.9. It is pointed out that different numerical value should be selected for different coal face according to different demand for reliability. 展开更多
关键词 fully mechanized top-coal caving face velocity matching of coal cutting and caving reliability
下载PDF
Monitoring strata behavior due to multi-slicing top coal caving longwall mining in steeply dipping extra thick coal seam 被引量:6
15
作者 Yun Dongfeng Liu Zhu +3 位作者 Cheng Wendong Fan Zhendong Wang Dongfang Zhang Yuanhao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第1期179-184,共6页
For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of ... For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of panel 37220 in Dongxia Coal Mine were monitored using the KJ513 dynamic monitoring system.The set up rooms adopted the "horizontal line-arc segment-inclined line" form and used different types of shield supports.The results show that the strata pressure of upper slice panel 37220-1 changed slightly along the strike direction,while along the dip direction it exhibited strong to weak pressure from bottom to top.The first weighting interval of lower slice panel 37220-2 was about 60.8 m,and the average periodic weighting interval were about 22.6 m.The strata behavior of panel 37220-2 exhibited a spatiotemporal characteristic in that periodic weighting occurred first in the middle-upper part,followed by the middle and upper parts,arc segment,and finally the lower part.During the periodic weighting,the weighting interval and intensity also exhibited strong space characteristics.The average dynamic load coefficient was 1.48 and the maximum lateral load of the side shield was 20-25 MPa. 展开更多
关键词 MonITORING Steeply dipping seam SLICING Longwall along the strike fully mechanized top-caving face Strata behavior
下载PDF
Investigation on the stress field characteristic of top coal at FMTC faces under the influence of caving thickness 被引量:5
16
作者 谢广祥 常聚才 杨科 《Journal of Coal Science & Engineering(China)》 2007年第2期123-125,共3页
In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress red... In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress redistribution rules of top coal with different thick coal seam were obtained by investigation on the numerical simulation of the redistributions of the stress with different coal seam's thickness. The research showes that there exists a certain difference on the stress distributions of the top coal at face, the maximum principal stress is located near to the tailentry's corner. The vertical stress's peak of the top coal decreases and the distance ahead of face position increases as the once mining thickness of the coal seam increases. At the same coal seam, the vertical stresses' peak of top coal gradually decreases from the top to the bottom, the peak's position is basically the same and its changes are gradually obvious with the thickness of coal seam increas- ing. The vertical stress of top coal places in a low stress state at a certain range ahead of face and over the face, which reveals the essence that the support loads are generally low under the condition of FMTC. The study supplies the theoretical foundation for the support design and selection, the theory of top coal's fragmentation, the movement rules of top coal and improving the recovery of top coal. 展开更多
关键词 fully mechanized top-coal caving face thickness of coal seam top coal stress field
下载PDF
Experiment Research of Application of FMCCT in Complex-Condition Coal Seams
17
作者 王家臣 吴健 +1 位作者 梁俊芳 刘士琦 《International Journal of Mining Science and Technology》 SCIE EI 1998年第1期55-60,共6页
The fully-mechanized caving coal technique (FMCCT) is a great technique progress of mining method in thick coal seams in China, and it has succeeded in some suitable condition mines. This paper introduces some technic... The fully-mechanized caving coal technique (FMCCT) is a great technique progress of mining method in thick coal seams in China, and it has succeeded in some suitable condition mines. This paper introduces some technical measures and achieved outcomes in gas and fire precaution and support selection for the use of the fully-mechanized caving coal technique in the complex-condition coal seams based on the practice of Weijiadi Coal Mine, in which the technique is used in the gently inclined extremelythick soft coal seam with the dangers of coal and gas outburst and spontaneous combustion. 展开更多
关键词 fully-mechanized CAVING coal technique THICK coal seam gas coal SPonTANEOUS combustion
下载PDF
Ground pressure and overlying strata structure for a repeated mining face of residual coal after room and pillar mining 被引量:10
18
作者 Jiang Bangyou Wang Lianguo +2 位作者 Lu Yinlong Sun Xiaokang Jin Gan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期645-652,共8页
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev... To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable. 展开更多
关键词 Residual coal after room and pillar mining Repeated mining fully mechanized caving face Roof control Support resistance
下载PDF
Mating model on production capacity for the system of cutting coal and drawing top-coal in FMMSC
19
作者 翟新献 《Journal of Coal Science & Engineering(China)》 2007年第2期113-117,共5页
Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to par... Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to parallel work with shearer cutting coal, decrease failure ratio of rear scraper conveyor and increase safe production capacity of equipments, based on production technology, set up the mating model of safe production capacity of equipments for the system of drawing top-coal and shearer cutting coal in coal face with sublevel caving. It is mean capability of drawing top-coal adapted to the capability of shearer cutting coal in a working circle in the coal face that was deduced. The type selection of equipment of rear scraper conveyor can be tackled with this mating model. The model was applied in FMMSC in Yangcun Coal Mine, Yima Coal Group of China. With the mating light-equipments, the coal output in coal face attained 1.05 Mt in 2004. It gained better technical-economic benefit. 展开更多
关键词 coal mine coal face fully mechanized mining with sublevel caving (FMMSC) system of curing coal and drawing top-coal mating equipments
下载PDF
我国大倾角煤层开采技术变革与展望 被引量:2
20
作者 伍永平 郎丁 +14 位作者 贠东风 解盘石 王红伟 高喜才 罗生虎 曾佑富 吕文玉 张艳丽 胡博胜 皇甫靖宇 周邦远 黄国春 王丽 李俊明 刘斌 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第1期25-51,共27页
大倾角煤层是我国煤炭资源的主要赋存样式之一。在地域分布上呈现出广泛性与区域性,据不完全统计,全国25个省、自治区、直辖市均涉及该类煤层开采,在中西部地区储量丰富、产量大、生产集中程度高。在赋存条件上呈现出多样性与复杂性,不... 大倾角煤层是我国煤炭资源的主要赋存样式之一。在地域分布上呈现出广泛性与区域性,据不完全统计,全国25个省、自治区、直辖市均涉及该类煤层开采,在中西部地区储量丰富、产量大、生产集中程度高。在赋存条件上呈现出多样性与复杂性,不同区域成煤时期不一,构造控煤过程迥异,形成了多样且复杂的开采条件,催生了不同的开采技术要求。大倾角煤层开采的技术难度大。煤层倾角导致采场围岩运动破坏呈现非对称性显现特征,支护系统稳定性控制与“三机”配套与协同、采准巷道布置与支护、工作面“人-机”环境安全保障等工作的难度显著加剧,严重制约了矿井安全高效开采。大倾角煤层开采的区域经济需求强,该类煤层赋存与生产较集中的区域多见以煤炭工业为主的资源型城市,经济结构相对单一,煤炭资源安全高效开发利用对区域能源保供、民生保障、经济保稳具有兜底作用。长期以来,大倾角煤层开采技术变革聚焦于解决“难”与“需”的矛盾,在采煤方法与工艺、岩层控制理论与技术、成套装备研制与应用3个方面不断完善、创新、发展,实现了由非机械化向机械化开采的转变,安全产效水平大幅提升,人员劳动强度大幅下降,作业环境显著改善。20世纪90年代中期,川煤集团绿水洞煤矿首次成功实现了大倾角中厚煤层长壁综采,冲破了大倾角煤层机械化开采技术“禁区”。在此示范作用下,大倾角厚煤层长壁综放开采、大采高综采、薄煤层伪俯斜长壁综采三项首创性工程实践先后取得成功。这一过程中创新了工作面非线性限位布置与调斜方式,确立了“支架-围岩”系统稳定性多维交互控制模式,研发了工作面成套装备,取得良好收效,综合机械化开采技术适用范围进一步拓宽。与此同时,大倾角煤层开采仍存在许多亟待突破的关键科学问题与技术瓶颈,导致自动化、智能化水平提升与近水平/缓倾斜煤层相较仍存在较大差距。需进一步强化倾斜层状煤系地层煤岩体采动力学行为研究,揭示其对采场围岩灾变的控制机制,并实现量化表征;需进一步阐明岩体承载结构-采场装备群组系统间的多维动态作用过程与规律,完善装备与围岩多维动态多目标协同控制理论与技术基础,实现技术转化应用。在科学问题取得突破的基础上进行采煤方法、回采工艺、岩层控制、成套装备的系统性技术创新与研发,破解大倾角煤层开采安全-产效双提升的制约技术瓶颈,使大倾角煤层综合机械化开采倾角上限在有可靠技术保障的前提下向上延伸(扩展),为实现自动化、智能化开采奠定基础。 展开更多
关键词 大倾角煤层 机械化开采 岩层控制 技术变革
下载PDF
上一页 1 2 167 下一页 到第
使用帮助 返回顶部