The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
It is difficult to accurately calculate the lump coal rate in a fully mechanized mining face.Therefore,a numerical simulation of the coal wall cutting process,which revealed the crack expansion,development,evolution i...It is difficult to accurately calculate the lump coal rate in a fully mechanized mining face.Therefore,a numerical simulation of the coal wall cutting process,which revealed the crack expansion,development,evolution in the coal body and the corresponding lump coal formation mechanism,was performed in PFC2D.Moreover,a correlation was established between the cutting force and lump coal formation,and a statistical analysis method was proposed to determine the lump coal rate.The following conclusions are drawn from the results:(1)Based on a soft ball model,a coal wall cutting model is established.By setting the roller parameters based on linear bonding and simulating the roller cutting process of the coal body,the coal wall cutting process is effectively simulated,and accurate lump coal rate statistics are provided.(2)Under the cutting stress,the coal body in the working face underwent three stages—microfracture generation,fracture expansion,and fracture penetration—to form lump coal,in which the fracture direction is orthogonal to the cutting pressure chain.Within a certain range from the roller,as the cutting depth of the roller increased,the number of new fractures in the coal body first increases and then stabilizes.(3)Under the cutting stress,the fractured coal body is locally compressed,thereby forming a compact core.The formation and destruction of the compact core causes fluctuations in the cutting force.The fluctuation amplitude is positively related to the coal mass.(4)Because the simulation does not consider secondary damage in the coal,the simulated lump coal rate is larger than the actual lump coal rate in the working face;this deviation is mainly concentrated in large lump coal with a diameter greater than 300 mm.展开更多
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de...Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.展开更多
A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compou...A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.展开更多
The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the s...The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.展开更多
The matching relationship between coal cutting and caving in fully mechanized top-coal caving face is analyzed in detail from the angle of reliability. The coupling equation of reliability is established corresponding...The matching relationship between coal cutting and caving in fully mechanized top-coal caving face is analyzed in detail from the angle of reliability. The coupling equation of reliability is established correspondingly, and the mathematical equation of the coefficient of velocity matching of coal cutting and caving is obtained, which meets a certain reliability demand for making the working procedure of coal caving not influence coal cutting of coal-cutter. The results show that the relationship between the coefficient of the velocity matching and the reliability of coal cutting and caving system is linear on the whole when R <0.9. It is pointed out that different numerical value should be selected for different coal face according to different demand for reliability.展开更多
Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ...Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.展开更多
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas...In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.展开更多
For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertica...For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.展开更多
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to par...Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to parallel work with shearer cutting coal, decrease failure ratio of rear scraper conveyor and increase safe production capacity of equipments, based on production technology, set up the mating model of safe production capacity of equipments for the system of drawing top-coal and shearer cutting coal in coal face with sublevel caving. It is mean capability of drawing top-coal adapted to the capability of shearer cutting coal in a working circle in the coal face that was deduced. The type selection of equipment of rear scraper conveyor can be tackled with this mating model. The model was applied in FMMSC in Yangcun Coal Mine, Yima Coal Group of China. With the mating light-equipments, the coal output in coal face attained 1.05 Mt in 2004. It gained better technical-economic benefit.展开更多
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金The funding was supported by National Natural Science Foundation of China(No.51974294).
文摘It is difficult to accurately calculate the lump coal rate in a fully mechanized mining face.Therefore,a numerical simulation of the coal wall cutting process,which revealed the crack expansion,development,evolution in the coal body and the corresponding lump coal formation mechanism,was performed in PFC2D.Moreover,a correlation was established between the cutting force and lump coal formation,and a statistical analysis method was proposed to determine the lump coal rate.The following conclusions are drawn from the results:(1)Based on a soft ball model,a coal wall cutting model is established.By setting the roller parameters based on linear bonding and simulating the roller cutting process of the coal body,the coal wall cutting process is effectively simulated,and accurate lump coal rate statistics are provided.(2)Under the cutting stress,the coal body in the working face underwent three stages—microfracture generation,fracture expansion,and fracture penetration—to form lump coal,in which the fracture direction is orthogonal to the cutting pressure chain.Within a certain range from the roller,as the cutting depth of the roller increased,the number of new fractures in the coal body first increases and then stabilizes.(3)Under the cutting stress,the fractured coal body is locally compressed,thereby forming a compact core.The formation and destruction of the compact core causes fluctuations in the cutting force.The fluctuation amplitude is positively related to the coal mass.(4)Because the simulation does not consider secondary damage in the coal,the simulated lump coal rate is larger than the actual lump coal rate in the working face;this deviation is mainly concentrated in large lump coal with a diameter greater than 300 mm.
文摘Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.
文摘A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.
基金Supported by the Production Safety and Supervision of Management Bureau of China(04-116) the Returned Overseas Scholar Fund of Educational Department of China(2003406)+1 种基金 the Soft Science Planning Program of Shandong Province(A200423-6) the National Soft Science Planed Program (2004DGQ3D090)
文摘The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.
文摘The matching relationship between coal cutting and caving in fully mechanized top-coal caving face is analyzed in detail from the angle of reliability. The coupling equation of reliability is established correspondingly, and the mathematical equation of the coefficient of velocity matching of coal cutting and caving is obtained, which meets a certain reliability demand for making the working procedure of coal caving not influence coal cutting of coal-cutter. The results show that the relationship between the coefficient of the velocity matching and the reliability of coal cutting and caving system is linear on the whole when R <0.9. It is pointed out that different numerical value should be selected for different coal face according to different demand for reliability.
文摘Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.
基金financially supported by the National Natural Science Fund of China(Nos.51004003 and 51474009)Anhui Province Education Department Natural Science Fund Key Project of China(No.KJ2010A091)
文摘In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.
基金support for this work provided by the National Natural Science Foundation of China (No. 51074165)the major program of the National Natural Science Foundation of China (No. 50834004)the Innovation Project of Graduate Students of Jiangsu Province (No. CXZZ11-0308)
文摘For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
文摘Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to parallel work with shearer cutting coal, decrease failure ratio of rear scraper conveyor and increase safe production capacity of equipments, based on production technology, set up the mating model of safe production capacity of equipments for the system of drawing top-coal and shearer cutting coal in coal face with sublevel caving. It is mean capability of drawing top-coal adapted to the capability of shearer cutting coal in a working circle in the coal face that was deduced. The type selection of equipment of rear scraper conveyor can be tackled with this mating model. The model was applied in FMMSC in Yangcun Coal Mine, Yima Coal Group of China. With the mating light-equipments, the coal output in coal face attained 1.05 Mt in 2004. It gained better technical-economic benefit.