Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de...Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.展开更多
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr...Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM.展开更多
According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of ...According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of gently inclined complicated geological structure and production shortcomings are found out and reliability of system and output of the working face are predicted finally.展开更多
The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the s...The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.展开更多
Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ...Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.展开更多
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas...In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.展开更多
A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, ...A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.展开更多
Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof over...Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.展开更多
Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order...Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order to improve the top-coal recovery ratio of fully mechanized cave mining with large mining height, a study was conducted on optimizing the caving process, based on the mechanized caving face 1302N in Longgu Coal Mine. This was achieved by improving the PFC numerical calculation methods, and establishing a more accurate model system. On this basis, the recovery ratio of the top coal in different drawing intervals and technologies was investigated in order to achieve a reasonable caving process. The top-coal tracking system was used for practical surveying of the recovery ratio of top coal.展开更多
Divided the gob gas in different types according to falling structure and spatial patterns of gob of the fully mechanized caving mining and analyzed its main form of harm. This passage preliminarily studied the law of...Divided the gob gas in different types according to falling structure and spatial patterns of gob of the fully mechanized caving mining and analyzed its main form of harm. This passage preliminarily studied the law of unusual gush of gob gas of the fully mechanized caving mining. According to the basic condition for the gas explosion, made comprehensive analysis and appraisal about the oxygen condition, gas concentration distribute and fire source conditions. And find that there is the dangerous district of gas explosion in a certain area of the producing gob and give the three zone theory of gob gas explosion.展开更多
To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit...To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit.The existing research shows that the surrounding rock of the roadway has self-stability,and the early or late support is not conducive to the safe and reliable support of the roadway,so there is a problem of support opportunity.In order to study the supporting effect and the optimal supporting time of the above solution,we established the mechanical coupling model of surrounding rock and advance support,and investigated the surrounding rock deformation and advance support pressure distribution under different reserved roof subsidence by using the numerical simulation software FLAC3D.The results show that the deformation of surrounding rock increases and finally tends to a stable level with the increase of pre settlement of roadway roof,and when the pre settlement of roof is between 8-15 mm,the vertical pressure of the top beam of advance support reaches the minimum value,about 0.58 MPa.Based on the above research,we put forward the optimum supporting time in roadway excavation,and summarized the evaluation method based on the mechanical coupling model of surrounding rock-advance support.展开更多
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertica...For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.展开更多
Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to par...Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to parallel work with shearer cutting coal, decrease failure ratio of rear scraper conveyor and increase safe production capacity of equipments, based on production technology, set up the mating model of safe production capacity of equipments for the system of drawing top-coal and shearer cutting coal in coal face with sublevel caving. It is mean capability of drawing top-coal adapted to the capability of shearer cutting coal in a working circle in the coal face that was deduced. The type selection of equipment of rear scraper conveyor can be tackled with this mating model. The model was applied in FMMSC in Yangcun Coal Mine, Yima Coal Group of China. With the mating light-equipments, the coal output in coal face attained 1.05 Mt in 2004. It gained better technical-economic benefit.展开更多
文摘Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.
基金Project(SKLCRSM12X01)supported by State Key Laboratory of Coal Resources and Safe Mining,China University of Mining&TechnologyProject(2014ZDPY02)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CXLX13_951)supported by the Research Innovation Program for College Graduates of Jiangsu Province,China
文摘Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM.
文摘According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of gently inclined complicated geological structure and production shortcomings are found out and reliability of system and output of the working face are predicted finally.
基金Supported by the Production Safety and Supervision of Management Bureau of China(04-116) the Returned Overseas Scholar Fund of Educational Department of China(2003406)+1 种基金 the Soft Science Planning Program of Shandong Province(A200423-6) the National Soft Science Planed Program (2004DGQ3D090)
文摘The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.
文摘Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.
基金financially supported by the National Natural Science Fund of China(Nos.51004003 and 51474009)Anhui Province Education Department Natural Science Fund Key Project of China(No.KJ2010A091)
文摘In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.
基金supported by the Key Program of the Coal Joint Funds of the National Natural Science Foundation of China (No.U1261205)the Youth Program of National Natural Science Foundation of China (No.51404147)+2 种基金the Class General Financial Grant from the China Postdoctoral Science Foundation (No.2015M570601)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No.2014RCJJ029)the State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology (No.MDPC2013ZR02)
文摘A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious.
基金Supported by National Natural Science Fundation of China(50674045)
文摘Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.
文摘Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order to improve the top-coal recovery ratio of fully mechanized cave mining with large mining height, a study was conducted on optimizing the caving process, based on the mechanized caving face 1302N in Longgu Coal Mine. This was achieved by improving the PFC numerical calculation methods, and establishing a more accurate model system. On this basis, the recovery ratio of the top coal in different drawing intervals and technologies was investigated in order to achieve a reasonable caving process. The top-coal tracking system was used for practical surveying of the recovery ratio of top coal.
文摘Divided the gob gas in different types according to falling structure and spatial patterns of gob of the fully mechanized caving mining and analyzed its main form of harm. This passage preliminarily studied the law of unusual gush of gob gas of the fully mechanized caving mining. According to the basic condition for the gas explosion, made comprehensive analysis and appraisal about the oxygen condition, gas concentration distribute and fire source conditions. And find that there is the dangerous district of gas explosion in a certain area of the producing gob and give the three zone theory of gob gas explosion.
基金National Key Basic Research and Development Program Fund project(Grant No.2014CB046306)the Central University Funding Project for Basic Scientific Research Operations(Grant No.2009QJ16)
文摘To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit.The existing research shows that the surrounding rock of the roadway has self-stability,and the early or late support is not conducive to the safe and reliable support of the roadway,so there is a problem of support opportunity.In order to study the supporting effect and the optimal supporting time of the above solution,we established the mechanical coupling model of surrounding rock and advance support,and investigated the surrounding rock deformation and advance support pressure distribution under different reserved roof subsidence by using the numerical simulation software FLAC3D.The results show that the deformation of surrounding rock increases and finally tends to a stable level with the increase of pre settlement of roadway roof,and when the pre settlement of roof is between 8-15 mm,the vertical pressure of the top beam of advance support reaches the minimum value,about 0.58 MPa.Based on the above research,we put forward the optimum supporting time in roadway excavation,and summarized the evaluation method based on the mechanical coupling model of surrounding rock-advance support.
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
基金support for this work provided by the National Natural Science Foundation of China (No. 51074165)the major program of the National Natural Science Foundation of China (No. 50834004)the Innovation Project of Graduate Students of Jiangsu Province (No. CXZZ11-0308)
文摘For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.
文摘Being a safe and highly-efficient mining method, fully mechanized mining with sublevel caving (FMMSC) was extensively employed in Chinese coal mines with thick seam. In order to make drawing top-coal furthest to parallel work with shearer cutting coal, decrease failure ratio of rear scraper conveyor and increase safe production capacity of equipments, based on production technology, set up the mating model of safe production capacity of equipments for the system of drawing top-coal and shearer cutting coal in coal face with sublevel caving. It is mean capability of drawing top-coal adapted to the capability of shearer cutting coal in a working circle in the coal face that was deduced. The type selection of equipment of rear scraper conveyor can be tackled with this mating model. The model was applied in FMMSC in Yangcun Coal Mine, Yima Coal Group of China. With the mating light-equipments, the coal output in coal face attained 1.05 Mt in 2004. It gained better technical-economic benefit.