期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
AN UNSUPERVISED CLASSIFICATION FOR FULLY POLARIMETRIC SAR DATA USING SPAN/H/α IHSL TRANSFORM AND THE FCM ALGORITHM 被引量:1
1
作者 Wu Yirong Cao Fang Hong Wen 《Journal of Electronics(China)》 2007年第2期145-149,共5页
In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We app... In this paper, the IHSL transform and the Fuzzy C-Means (FCM) segmentation algorithm are combined together to perform the unsupervised classification for fully polarimetric Synthetic Ap-erture Rader (SAR) data. We apply the IHSL colour transform to H/α/SPANspace to obtain a new space (RGB colour space) which has a uniform distinguishability among inner parameters and contains the whole polarimetric information in H/α/SPAN.Then the FCM algorithm is applied to this RGB space to finish the classification procedure. The main advantages of this method are that the parameters in the color space have similar interclass distinguishability, thus it can achieve a high performance in the pixel based segmentation algorithm, and since we can treat the parameters in the same way, the segmentation procedure can be simplified. The experiments show that it can provide an improved classification result compared with the method which uses the H/α/SPANspace di-rectly during the segmentation procedure. 展开更多
关键词 IHSL transform Fuzzy C-Means (FCM) segmentation fully polarimetric SyntheticAperture Rader sar data Unsupervised classification
下载PDF
Shallow sea topography detection using fully Polarimetric Gaofen-3 SAR data based on swell patterns
2
作者 Longyu Huang Chenqing Fan +2 位作者 Junmin Meng Jungang Yang Jie Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期150-162,共13页
Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography... Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography detection.The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research.In this paper,a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data.This method considers swell patterns and only requires SAR data and little prior knowledge of the water depth to detect shallow sea topography.Wave tracking was performed based on preprocessed fully polarimetric SAR data,and the water depth was then calculated considering the wave parameters and the linear dispersion relationships.In this paper,four study areas were selected for experiments,and the experimental results indicated that the polarimetric scattering parameterαhad higher detection accuracy than quad-polarization images.The mean relative errors were 14.52%,10.30%,12.56%,and 12.90%,respectively,in the four study areas.In addition,this paper also analyzed the detection ability of this model for different topographies,and the experiments revealed that the topography could be well recognized when the topography gradient is small,the topography gradient direction is close to the wave propagation direction,and the isobath line is regular. 展开更多
关键词 fully polarimetric sar shallow sea topography Gaofen-3 swell patterns
下载PDF
Fully Polarimetric Land Cover Classification Based on Markov Chains 被引量:2
3
作者 Georgia Koukiou Vassilis Anastassopoulos 《Advances in Remote Sensing》 2021年第3期47-65,共19页
A novel land cover classification procedure is presented utilizing the infor</span><span style="font-family:Verdana;">mation content of fully polarimetric SAR images. The Cameron cohere</span&... A novel land cover classification procedure is presented utilizing the infor</span><span style="font-family:Verdana;">mation content of fully polarimetric SAR images. The Cameron cohere</span><span style="font-family:Verdana;">nt target decomposition (CTD) is employed to characterize land cover pixel by pixel. Cameron’s CTD is employed since it provides a complete set of elem</span><span style="font-family:Verdana;">entary scattering mechanisms to describe the physical properties of t</span><span style="font-family:Verdana;">he scatterer. The novelty of the proposed land classification approach lies on the fact that the features used for classification are not the types of the elementary </span><span style="font-family:Verdana;">scatterers themselves, but the way these types of scatterers alternate from p</span><span style="font-family:Verdana;">ixel </span><span style="font-family:Verdana;">to pixel on the SAR image. Thus, transition matrices that represent loc</span><span style="font-family:Verdana;">al Markov models are used as classification features for land cover classification. The classification rule employs only the most important transitions for decision making. The Frobenius inner product is employed as similarity measure. Ten different types of land cover are used for testing the proposed method. In this aspect, the classification performance is significantly high. 展开更多
关键词 fully polarimetric sar Coherent Decomposition Elementary Scatterers Markov Chains Land Cover Classification
下载PDF
Fully Polarimetric Land Cover Classification Based on Hidden Markov Models Trained with Multiple Observations
4
作者 Konstantinos Karachristos Georgia Koukiou Vassilis Anastassopoulos 《Advances in Remote Sensing》 2021年第3期102-114,共13页
A land cover classification procedure is presented utilizing the information content of fully polarimetric SAR images. The Cameron coherent target decomposition (CTD) is employed to characterize each pixel, using a se... A land cover classification procedure is presented utilizing the information content of fully polarimetric SAR images. The Cameron coherent target decomposition (CTD) is employed to characterize each pixel, using a set of canonical scattering mechanisms in order to describe the physical properties of the scatterer. The novelty of the proposed classification approach lies on the use of Hidden Markov Models (HMM) to uniquely characterize each type of land cover. The motivation to this approach is the investigation of the alternation between scattering mechanisms from SAR pixel to pixel. Depending </span><span style="font-family:Verdana;">on the observations-scattering mechanisms and exploiting the transitions </span><span style="font-family:Verdana;">between the scattering mechanisms we decide upon the HMM-land cover type. The classification process is based on the likelihood of observation sequences </span><span style="font-family:Verdana;">been evaluated by each model. The performance of the classification ap</span><span style="font-family:Verdana;">proach is assessed my means of fully polarimetric SLC SAR data from the broader </span><span style="font-family:Verdana;">area of Vancouver, Canada and was found satisfactory, reaching a success</span><span style="font-family:Verdana;"> from 87% to over 99%. 展开更多
关键词 fully polarimetric sar Coherent Decomposition Land Cover Classification Hidden Markov Models Remote Sensing
下载PDF
Simulated Annealing for Land Cover Classification in PolSAR Images
5
作者 Georgia Koukiou 《Advances in Remote Sensing》 2022年第2期49-61,共13页
Simulated Annealing (SA) is used in this work as a global optimization technique applied in discrete search spaces in order to change the characterization of pixels in a Polarimetric Synthetic Aperture Radar (PolSAR) ... Simulated Annealing (SA) is used in this work as a global optimization technique applied in discrete search spaces in order to change the characterization of pixels in a Polarimetric Synthetic Aperture Radar (PolSAR) image which have been classified with different label than the surrounding land cover type. Accordingly, Land Cover type classification is achieved with high reliability. For this purpose, an energy function is employed which is minimized by means of SA when the false classified pixels are correctly labeled. All PolSAR pixels are initially classified using 9 specifically selected types of land cover by means of Google Earth maps. Each Land Cover Type is represented by a histogram of the 8 Cameron’s elemental scatterers by means of coherent target decomposition (CTD). Each PolSAR pixel is categorized according to the local histogram of the elemental scatterers. SA is applied in the discreet space of nine land cover types. Classification results prove that the Simulated Annealing approach used is very successful for correctly separating regions with different Land Cover Types. 展开更多
关键词 Land Cover Classification Simulated Annealing fully polarimetric sar Co-herent Decomposition Elemental Scatterers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部