We investigate the maximum happy vertices(MHV)problem and its complement,the minimum unhappy vertices(MUHV)problem.In order to design better approximation algorithms,we introduce the supermodular and submodular multi-...We investigate the maximum happy vertices(MHV)problem and its complement,the minimum unhappy vertices(MUHV)problem.In order to design better approximation algorithms,we introduce the supermodular and submodular multi-labeling(SUP-ML and SUB-ML)problems and show that MHV and MUHV are special cases of SUP-ML and SUB-ML,respectively,by rewriting the objective functions as set functions.The convex relaxation on the I ovasz extension,originally presented for the submodular multi-partitioning problem,can be extended for the SUB-ML problem,thereby proving that SUB-ML(SUP-ML,respectively)can be approximated within a factorof2-2/k(2/k,respectively),where k is the number of labels.These general results imply that MHV and MUHV can also be approximated within factors of 2/k and 2-2/k,respectively,using the same approximation algorithms.For the MUHV problem,we also show that it is approximation-equivalent to the hypergraph multiway cut problem;thus,MUHV is Unique Games-hard to achieve a(2-2/k-e)-approximation,for anyε>0.For the MHV problem,the 2/k-approximation improves the previous best approximation ratio max{1/k,1/(△+1/g(△)},where△is the maximum vertex degree of the input graph and g(△)=(√△+√△+1)2△>4△2.We also show that an existing LP relaxation for MHV is the same as the concave relaxation on the Lovasz extension for SUP-ML;we then prove an upper bound of 2/k on the integrality gap of this LP relaxation,which suggests that the 2/k-approximation is the best possible based on this LP relaxation.Lastly,we prove that it is Unique Games-hard to approximate the MHV problem within a factor of S2(log2 k/k).展开更多
Abstract Given a directed graph G and an edge weight function w : A(G) M R^+ the maximum directed cut problem (MAX DICUT) is that of finding a directed cut '(S) with maximum total weight. We consider a version of ...Abstract Given a directed graph G and an edge weight function w : A(G) M R^+ the maximum directed cut problem (MAX DICUT) is that of finding a directed cut '(S) with maximum total weight. We consider a version of MAX DICUT -- MAX DICUT with given sizes of parts or MAX DICUT WITH GSP -- whose instance is that of MAX DICUT plus a positive integer k, and it is required to find a directed cut '(S) having maximum weight over all cuts '(S) with |S|=k. We present an approximation algorithm for this problem which is based on semidefinite programming (SDP) relaxation. The algorithm achieves the presently best performance guarantee for a range of k.展开更多
基金the National Natural Science Foundation of China(Nos.11771114,11571252,and 61672323)the China Scholarship Council(No.201508330054)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2016AM28)the Natural Sciences and Engineering Research Council of Canada.
文摘We investigate the maximum happy vertices(MHV)problem and its complement,the minimum unhappy vertices(MUHV)problem.In order to design better approximation algorithms,we introduce the supermodular and submodular multi-labeling(SUP-ML and SUB-ML)problems and show that MHV and MUHV are special cases of SUP-ML and SUB-ML,respectively,by rewriting the objective functions as set functions.The convex relaxation on the I ovasz extension,originally presented for the submodular multi-partitioning problem,can be extended for the SUB-ML problem,thereby proving that SUB-ML(SUP-ML,respectively)can be approximated within a factorof2-2/k(2/k,respectively),where k is the number of labels.These general results imply that MHV and MUHV can also be approximated within factors of 2/k and 2-2/k,respectively,using the same approximation algorithms.For the MUHV problem,we also show that it is approximation-equivalent to the hypergraph multiway cut problem;thus,MUHV is Unique Games-hard to achieve a(2-2/k-e)-approximation,for anyε>0.For the MHV problem,the 2/k-approximation improves the previous best approximation ratio max{1/k,1/(△+1/g(△)},where△is the maximum vertex degree of the input graph and g(△)=(√△+√△+1)2△>4△2.We also show that an existing LP relaxation for MHV is the same as the concave relaxation on the Lovasz extension for SUP-ML;we then prove an upper bound of 2/k on the integrality gap of this LP relaxation,which suggests that the 2/k-approximation is the best possible based on this LP relaxation.Lastly,we prove that it is Unique Games-hard to approximate the MHV problem within a factor of S2(log2 k/k).
基金Supported by K. C. Wong Education Foundation of Hong Kong,Chinese NSF (Grant No.19731001)National 973 Information Technology and High-Performance Software Program of China (Grant No.G1998030401)
文摘Abstract Given a directed graph G and an edge weight function w : A(G) M R^+ the maximum directed cut problem (MAX DICUT) is that of finding a directed cut '(S) with maximum total weight. We consider a version of MAX DICUT -- MAX DICUT with given sizes of parts or MAX DICUT WITH GSP -- whose instance is that of MAX DICUT plus a positive integer k, and it is required to find a directed cut '(S) having maximum weight over all cuts '(S) with |S|=k. We present an approximation algorithm for this problem which is based on semidefinite programming (SDP) relaxation. The algorithm achieves the presently best performance guarantee for a range of k.