期刊文献+
共找到24,859篇文章
< 1 2 250 >
每页显示 20 50 100
Assessment of compressive strength of jet grouting by machine learning 被引量:1
1
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength Machine learning
下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
2
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope grouting Slope protection Large-scale model test
下载PDF
Stability behavior of the Lanxi ancient flood control levee after reinforcement with upside-down hanging wells and grouting curtain
3
作者 QIN Zipeng TIAN Yan +4 位作者 GAO Siyuan ZHOU Jianfen HE Xiaohui HE Weizhong GAO Jingquan 《Journal of Mountain Science》 SCIE CSCD 2024年第1期84-99,共16页
The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the e... The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin. 展开更多
关键词 Stability analysis Multiple factors Antiseepage reinforcement Upside-down hanging well grouting curtain Ancient levee
下载PDF
Research on Sleeve Grouting Density Detection Based on the Impact Echo Method
4
作者 Pu Zhang Yingjun Li +5 位作者 Xinyu Zhu Shizhan Xu Pinwu Guan Wei Liu Yanwei Guo Haibo Wang 《Structural Durability & Health Monitoring》 EI 2024年第2期143-159,共17页
Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the ... Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars. 展开更多
关键词 Prefabricated building steel grouting sleeve impact echo method wavelet packet energy grouted defect
下载PDF
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
5
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
Numerical investigation of geostress influence on the grouting reinforcement effectiveness of tunnel surrounding rock mass in fault fracture zones
6
作者 Xiangyu Xu Zhijun Wu +3 位作者 Lei Weng Zhaofei Chu Quansheng Liu Yuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期81-101,共21页
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I... Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed. 展开更多
关键词 Numerical manifold method(NMM) grouting reinforcement Geostress condition Fault fracture zone Tunnel excavation
下载PDF
An Overview of Soil Improvement through Ground Grouting
7
作者 Md Ratan Bhuiyan Salequr Rahman Masum +1 位作者 Md Tushar Parvej S M Sanuwar 《Journal of Geoscience and Environment Protection》 2024年第1期51-63,共13页
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss... Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance. 展开更多
关键词 grouting Soil Improvement Permeation grouting Compaction grouting and Jet grouting
下载PDF
Mechanical properties of anti-seepage grouting materials for heavy metal contaminated soil 被引量:3
8
作者 杨宇友 王建强 豆海军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3316-3323,共8页
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ... Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added. 展开更多
关键词 heavy metal contaminated soil composite grouting material gel time compressive strength MICROSTRUCTURE
下载PDF
Testing Analysis of Composite Ground with Grouting Piles and Deep Mixing Piles
9
作者 邵俐 刘松玉 邵信发 《Journal of Southeast University(English Edition)》 EI CAS 2001年第2期65-68,共4页
This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the ... This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the static test. Based on Mindlin solution and Boussinesq solution, the additional stress and settlement of the composite ground are acquired.Compared the practical value with calculation, a better calculating method is confirmed. 展开更多
关键词 grouting piles Mindlin solution Boussinesq solution deep mixing piles
下载PDF
Grouting diffusion of chemical fluid flow in soil with fractal characteristics 被引量:6
10
作者 ZHOU Zi-long DU Xue-ming +1 位作者 CHEN Zhao ZHAO Yun-long 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1190-1196,共7页
The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusio... The chemical fluid property and the capillary structure of soil are important factors that affect grouting diffusion. Ignoring either factor will produce large errors in understanding the inherent laws of the diffusion process. Based on fractal geometry and the constitutive equation of Herschel-Bulkley fluid, an analytical model for Herschel-Bulkley fluid flowing in a porous geo-material with fractal characteristics is derived. The proposed model provides a theoretical basis for grouting design and helps to understand the chemical fluid flow in soil in real environments. The results indicate that the predictions from the proposed model show good consistency with the literature data and application results. Grouting pressure decreases with increasing diffusion distance. Under the condition that the chemical fluid flows the same distance, the grouting pressure undergoes almost no change at first and then decreases nonlinearly with increasing tortuosity dimension. With increasing rheological index, the pressure difference first decreases linearly, then presents a trend of nonlinear decrease, and then decreases linearly again. The pressure difference gradually increases with increasing viscosity and yield stress of the chemical fluid. The decreasing trend of the grouting pressure difference is non-linear and rapid for porosity Φ>0.4, while there is a linear and slow decrease in pressure difference for high porosity. 展开更多
关键词 grouting DIFFUSION Herschel-Bulkley fluid POROUS MEDIA FRACTAL grouting pressure
下载PDF
Compressive Strength of Polymer Grouting Material at Different Temperatures 被引量:9
11
作者 石明生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期962-965,共4页
In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the tempera... In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the temperature control box under different temperatures.The change regularity of compressive strength of polymer grouting material under different temperatures and the law of volume changes of polymer samples were obtained.The experimental results show that:the compressive strength of polymer material increases with the increase of density;the temperature change has a certain influence on the compressive strength of polymer grouting material;the compressive strength decreases with temperature increases under the same density,but the compressive strength is not significantly affected by temperature when the density is less than 0.4 g/cm3;the volume change of the samples accords with the law of thermal expansion and contraction when temperature changes,and the increase of the volume is obvious when it is under high temperature.The achievements will provide an important basis to the application of the polymer grouting material. 展开更多
关键词 polymer grouting material compressive strength DENSITY TEMPERATURE VOLUME
下载PDF
Establishment and application of drilling sealing model in the spherical grouting mode based on the loosing-circle theory 被引量:6
12
作者 Hao Zhiyong Lin Baiquan +1 位作者 Gao Yabin Cheng Yanying 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期882-885,共4页
There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic b... There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic body which does not meet the characteristics of real drilling of the fractured body.Based on the loosing-circle theory and analyses of the surrounding rock stress field,cracks and seepage fields,combined with Newtonian fluid spherical grouting model,we deduced the dynamic relationship between the seepage coefficient and rock or grouting parameters of the drilling sealing fluid mode of spherical fissure grouting.In this experiment,mucus was injected in the simulated coal seam and the permeability coefficient of the sealing body was calculated by using the model.To verify the validity of the model,the calculated sealing body number was compared with the extreme negative pressure that the sealing body could withstand.The theoretical model revealed the drilling sealing fluid mechanism,provided a method for the quantitative calculation of the drilling sealing fluid effect by grouting mode and a reference for the subsequent research of sealing mechanism. 展开更多
关键词 DRILLING SEALING Loosing-circle grouting
下载PDF
Unified analytical solution for deep circular tunnel with consideration of seepage pressure,grouting and lining 被引量:5
13
作者 LI Xue-feng DU Shou-ji CHEN Bing 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1483-1493,共11页
A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone... A new unified analytical solution is presented for predicting the range of plastic zone and stress distributions around a deep circular tunnel in a homogeneous isotropic continuous medium. The rock mass, grouting zone and lining are assumed as elastic-perfectly plastic and governed by the unified strength theory(UST). This new solution has made it possible to consider the interaction between seepage pressure, lining, grouting and rock mass, and the intermediate principal stress effect together. Moreover, parametric analysis is carried out to identify the influence of the related parameters on the plastic zone radius. Under the given conditions, the results show that the plastic zone radius decreases with an increasing cohesion, internal friction angle and hydraulic conductivity of lining and unified failure criterion parameter, respectively; whereas the plastic zone radius increases with the growth of elasticity modulus of lining. Comparison of results from the new solution and the other published one shows well agreement and provides confidence in the new solution proposed. 展开更多
关键词 UNIFIED strength theory (UST) INTERMEDIATE principal stress SEEPAGE pressure grouting LINING analytical solution
下载PDF
Comparative experimental investigation of chemical grouting into a fracture with flowing and static water 被引量:8
14
作者 Zhang Gailing Zhan Kaiyu +1 位作者 Gao Yue Wang Wenxue 《Mining Science and Technology》 EI CAS 2011年第2期201-205,共5页
We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagati... We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices. 展开更多
关键词 Rock fracture Chemical grouting Flowing water grouting Static water grouting Scale model test
下载PDF
Strength of copolymer grouting material based on orthogonal experiment 被引量:12
15
作者 陈永贵 叶为民 张可能 《Journal of Central South University》 SCIE EI CAS 2009年第1期143-148,共6页
Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of w... Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of water-cement ratio (mass fraction of water to cement), epoxy resin content, and waterborne epoxy curing agent content. By orthogonal range and variance analysis, the orders of three factors to influence the strength, the significance levels of different factors, and the optimized compound ratio scheme of copolymer grouting material mixture at different curing ages were determined. An empirical relationship among the strength of copolymer grouting material, the water-cement ratio, the epoxy resin content, and the waterborne epoxy curing agent content was established by multivariate regression analysis. The results indicate that water-cement ratio is the most principal and significant influencing factor on the strength. Epoxy resin content and waterbome epoxy curing agent content also have a significant influence on the strength. But epoxy resin content has a greater influence on the 7-day and 28-day flexural strength, and waterborne epoxy curing agent content has a greater influence on the 3-day flexural strength and the compressive strength. The copolymer grouting material with water-cement ratio of 0.4, epoxy resin content of 8% (mass fraction) and waterbome epoxy curing agent content of 2% (mass fraction) is the best one for repairing of cement concrete pavement. The flexural strength and the compressive strength have good correlation, and the ratio of compressive strength to flexural strength is between 1.0 and 3.3. 展开更多
关键词 STRENGTH COPOLYMER chemical grouting orthogonal method regression model
下载PDF
A new clay-cement composite grouting material for tunnelling in underwater karst area 被引量:10
16
作者 ZHANG Cong YANG Jun-sheng +4 位作者 FU Jin-yang OU Xue-feng XIE Yi-peng DAI Yong LEI Jin-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1863-1873,共11页
A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable for... A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution. 展开更多
关键词 tunnel karst UNDERWATER new grouting material clay-cement composite
下载PDF
Numerical evaluation of uplifting effect for upper structure by grouting 被引量:10
17
作者 章敏 王星华 汪优 《Journal of Central South University》 SCIE EI CAS 2012年第2期553-561,共9页
A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reac... A stratum grouting-soil-structure interaction model which simplified the grouted zone into a series of spherical grout bulbs was established using FLAC3D program. The hypothetical non-uniform expansion process to reach an assigned volume strain due to soil compression by grouting was achieved by imposing radial velocity on outer mesh nodes of these spheres. This new method avoids the repeated trial calculation needed in the traditional method which applied a fictitious expanding pressure in the grouting element. The deformation and additional internal forces of structure were investigated during each grouting strategy and the influences of various stiffness of grouting proof curtain and bearing capacity of pile tip were discussed simultaneously. The numerical model is proved to be effective to replicate general behavior expected in the field and is capable of modeling the uplifting effect for the surface structure by grouting. 展开更多
关键词 grouting ground uplifting soil-structure interaction numerical simulation
下载PDF
Properties and Hydration Mechanism on High-strength Anchorage Grouting Material for Highway Slope 被引量:2
18
作者 TANG Hua LI Xiangguo +3 位作者 ZHANG Fachun HE Chao TAN Hongbo FANG Rui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1181-1185,共5页
The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix propor... The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix proportion of high-strength anchorage grouting material (HAGM) was C3 (FA:SP-SF= 1:2:2; AGI:AG2=3:7 and 0.03% FC), which is agreement with the limitation of JCT 986-2005. Moreover, the XRD and FTIR results showed the addition of expansive components was in favor of the formation of ettringite. The intensity of AFt oeak of the samnles increased with the increasing of hydration time. 展开更多
关键词 grouting material FLUIDITY STRENGTH HYDRATION SLOPE
下载PDF
Removal of Pb^(2+) and Cd^(2+) by adsorption on clay-solidified grouting curtain for waste landfills 被引量:15
19
作者 陈永贵 张可能 +1 位作者 邹银生 邓飞跃 《Journal of Central South University of Technology》 EI 2006年第2期166-170,共5页
Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of ... Pb2+ and Cd2+ in leachate were adsorbed on clay-solidified grouting curtain for waste landfills with equilibrium experiment. The cation exchange capacity was determined with ammonium acetate. And the concentration of heavy metal cations in leachate was determined with atomic absorption spectrophotometer. Their equilibrium isotherms were measured, and the experimental isotherm data were analyzed by using Freundlich and Langmuir models. The results show that the adsorption capacities of the heavy metal cations are closely related to the compositions of clay-solidified grouting curtain, and the maximum adsorption appears at the ratio of cement to clay of 2∶4 in the experimental conditions. At their maximum adsorption and pH 5.0, the adsorption capacities of Pb 2+ and Cd 2+ are 16.19mg/g and 1.21mg/g. The competitive adsorption coefficients indicate that the adsorption of clay-solidified grouting curtain for Pb2+ is stronger than that for Cd 2+ . The adsorption process conforms to Freundlich’s model with related coefficient higher than 0.996. 展开更多
关键词 ADSORPTION clay-solidified grouting curtain Pb^2+ Cd62+ Freundlich model leachate treatment
下载PDF
Grouting techniques for the unfavorable geological conditions of Xiang'an subsea tunnel in China 被引量:14
20
作者 Dingli Zhang Qian Fang Haicheng Lou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期438-446,共9页
One of the major challenges during subsea tunnel construction is to seal the potential water inflow. Thepaper presents a case study of Xiang'an subsea tunnel in Xiamen, the first subsea tunnel in China. Duringits con... One of the major challenges during subsea tunnel construction is to seal the potential water inflow. Thepaper presents a case study of Xiang'an subsea tunnel in Xiamen, the first subsea tunnel in China. Duringits construction, different grades of weathered geomaterials were encountered, which was the challengingissue for this project. To deal with these unfavorable geological conditions, grouting was adoptedas an important measure for ground treatment. The grouting mechanism is first illustrated by introducinga typical grouting process. Then the site-specific grouting techniques employed in the Xiang'ansubsea tunnel are elaborated. By using this ground reinforcement technique, the tunneling safety of theXiang'an subsea tunnel was guaranteed. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Subsea tunnel Weathered rocks grouting Water inflow
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部