Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-us...A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.展开更多
The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the ...The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the thin seam drum shearer. The key technology of short length and high power thin seam drum shearer, and new type roof support with big extension ratio and plate canopy were introduced. The new research achievement on automatic control system of complete sets of equipment for the thin seam coal, which composed of electronic-hydraulic system, compact thin seam roof supports, high effective shearer with intelligent control system, and characterized by automatical follow-up and remote control technology, was described in this paper..展开更多
Based on the number of fatalities per year, a persistent area of concern in mine safety continues to be equipment related. Data from the period 1995 through 2007 were studied in order to identify major hazards for und...Based on the number of fatalities per year, a persistent area of concern in mine safety continues to be equipment related. Data from the period 1995 through 2007 were studied in order to identify major hazards for underground mining equipment-related fatal incidents and to perform an analysis of those that occurred over the last 13 years. Reports on equipment-related fatal incidents were obtained from the Mine Safety and Health Administration (MSHA). The results show that underground mining equipment including continuous miner, shuttle car, roof bolter, load-haul-dump (LHD), Iongwall and hoisting contributed to a total of 69 mining-related fatalities. The study reveals that the major hazard for continuous mining equipment-related fatal incidents is "Failure of victim to respect equipment working area", while the highest number of fatalities for shuttle car is attributed to the hazard "Failure of mechanical components." The study further reveals that the highest number of fatalities for roof bolter, LHD, and Iongwall are attributed to the hazards "Working under unsupported roof", "Failure of management to provide safe working conditions", and "Failure of mechanical components", respectively. It is determined that one fatality for the hoisting system is attributed to the hazard "Failure of mechanical components" and one to the hazard "Failure to follow safe maintenance procedure". Finally, approaches to prevention were also discussed in this paper.展开更多
To prevent support crush, the overlying strata safe thickness and its influential elements were studied by the adoption of theoretical analysis, numerical simulation and in-situ measurement. According to the productio...To prevent support crush, the overlying strata safe thickness and its influential elements were studied by the adoption of theoretical analysis, numerical simulation and in-situ measurement. According to the production and geological condition of first face in Sima coal mine, the results indicate that the clay contains large permissible bearing ability and has better arching force. After mining destruction, stable structure is formed in bedrock to ensure face safety. The clay thickness & bedrock thickness are the key influential elements to stable structure. The minimal bedrock thickness is about 40 m to ensure safe mining under loose surface soil condition. When surface soil contains mainly thick clay, it forms steady structure with the composition of thin bedrock, so that it can reduce minimal thickness of bedrock and to ensure safe mining. When clay thickness is 40 m, minimal bedrock thickness is 20 m. When clay thickness is 30 m, minimal bedrock thickness is 30 m. Bearing pressure peak ranges from 5 to 15 m in the front face under thin bedrock condition. The bearing pressure distribution range is 15 m. Main roof break distance is small, and initial weighting of main roof is not distinctive, while first periodic weighting of main roof is quite distinctive.展开更多
This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mine...This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.展开更多
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
基金supports for this work provided by Na-tional basic research program of China (No. 2007CB209400)the National Natural Science Foundation of China (No. 50834004)+1 种基金the National Natural Science Foundation of China (No. 50574090) SR Foundation of China University of Mining & Technology (No. 50634050)
文摘A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.
基金Supported by the National Natural Science Foundation of China (50375026, 50375028) the National High-tech R&D Program of China (863 Program) (2012AA06A407)
文摘The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the thin seam drum shearer. The key technology of short length and high power thin seam drum shearer, and new type roof support with big extension ratio and plate canopy were introduced. The new research achievement on automatic control system of complete sets of equipment for the thin seam coal, which composed of electronic-hydraulic system, compact thin seam roof supports, high effective shearer with intelligent control system, and characterized by automatical follow-up and remote control technology, was described in this paper..
文摘Based on the number of fatalities per year, a persistent area of concern in mine safety continues to be equipment related. Data from the period 1995 through 2007 were studied in order to identify major hazards for underground mining equipment-related fatal incidents and to perform an analysis of those that occurred over the last 13 years. Reports on equipment-related fatal incidents were obtained from the Mine Safety and Health Administration (MSHA). The results show that underground mining equipment including continuous miner, shuttle car, roof bolter, load-haul-dump (LHD), Iongwall and hoisting contributed to a total of 69 mining-related fatalities. The study reveals that the major hazard for continuous mining equipment-related fatal incidents is "Failure of victim to respect equipment working area", while the highest number of fatalities for shuttle car is attributed to the hazard "Failure of mechanical components." The study further reveals that the highest number of fatalities for roof bolter, LHD, and Iongwall are attributed to the hazards "Working under unsupported roof", "Failure of management to provide safe working conditions", and "Failure of mechanical components", respectively. It is determined that one fatality for the hoisting system is attributed to the hazard "Failure of mechanical components" and one to the hazard "Failure to follow safe maintenance procedure". Finally, approaches to prevention were also discussed in this paper.
基金Supported by the National Natural Science Foundation of China(50504014)
文摘To prevent support crush, the overlying strata safe thickness and its influential elements were studied by the adoption of theoretical analysis, numerical simulation and in-situ measurement. According to the production and geological condition of first face in Sima coal mine, the results indicate that the clay contains large permissible bearing ability and has better arching force. After mining destruction, stable structure is formed in bedrock to ensure face safety. The clay thickness & bedrock thickness are the key influential elements to stable structure. The minimal bedrock thickness is about 40 m to ensure safe mining under loose surface soil condition. When surface soil contains mainly thick clay, it forms steady structure with the composition of thin bedrock, so that it can reduce minimal thickness of bedrock and to ensure safe mining. When clay thickness is 40 m, minimal bedrock thickness is 20 m. When clay thickness is 30 m, minimal bedrock thickness is 30 m. Bearing pressure peak ranges from 5 to 15 m in the front face under thin bedrock condition. The bearing pressure distribution range is 15 m. Main roof break distance is small, and initial weighting of main roof is not distinctive, while first periodic weighting of main roof is quite distinctive.
文摘This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.