In the original publication of my article,“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”,which was published in Chinese Journal of Chemical Physics,Vol.37,No.4,pa...In the original publication of my article,“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”,which was published in Chinese Journal of Chemical Physics,Vol.37,No.4,pages 497-504,I have identified an innegligible error that requires correction.I apologize for any inconvenience and appreciate the opportunity to clarify it in the following:Error Description:In page 499,since the words “FIG.2(b,d)”in line 78 are mentioned earlier than the words“FIG.1(a)”in line 82 in the submitted manuscript,the order of Figure 1 and Figure 2 are changed automatically in the official publication of the article,which makes the logical relationship of the article confused to a significant degree.展开更多
For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relatio...For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relationship between spin polarization of ferromagnet and the insulating barrier thickness in MTJs.Here,we investigate the influence of alumina barrier thickness on tunneling spin polarization(TSP)through a combination of theoretical calculations and experimental verification.Our simulating results reveal a significant impact of barrier thickness on TSP,exhibiting an oscillating decay of TSP with the barrier layer thinning.Experimental verification is realized on FeNi/AlO_(x)/Al superconducting tunnel junctions to directly probe the spin polarization of FeNi ferromagnet using Zeeman-split tunneling spectroscopy technique.These findings provide valuable insights for designs of high-performance spintronic devices,particularly in applications such as magnetic random access memories,where precise control over the insulating barrier layer is crucial.展开更多
The tunneling of the massless Dirac fermions through a vector potential barrier are theoretically investigated, wherethe vector potential can be introduced by very high and very thin (d-function) magnetic potential ba...The tunneling of the massless Dirac fermions through a vector potential barrier are theoretically investigated, wherethe vector potential can be introduced by very high and very thin (d-function) magnetic potential barriers. We showthat, distinct from the previously studied electric barrier tunneling, the vector potential barriers are more transparent forpseudospin-1/2 Dirac fermions but more obstructive for pseudospin-1 Dirac fermions. By tuning the height of the vectorpotential barrier, the pseudospin-1/2 Dirac fermions remain transmitted, whereas the transmission of the pseudospin-1Dirac fermions is forbidden, leading to a pseudospin filtering effect for massless Dirac fermions.展开更多
Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application pro...Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application prospects.In this study,the structure of the unit cell is designed,and the low frequency(<1 k Hz)valley locked waveguide is realized through the creation of a phononic crystal plate with a topological phase transition interface.The defect immunity of the topological waveguide is verified,that is,the wave can propagate along the original path in the cases of impurities and disorder.Then,the tunneling phenomenon is introduced into the topological valley-locked waveguide to analyze the wave propagation,and its potential applications(such as signal separators and logic gates)are further explored by designing phononic crystal plates.This research has broad application prospects in information processing and vibration control,and potential applications in other directions are also worth exploring.展开更多
Tunneling wounds create passageways underneath the skin surface with varying sizes and shapes and can have twists and turns,making their treatment extremely difficult.Available wound care solutions only cater to super...Tunneling wounds create passageways underneath the skin surface with varying sizes and shapes and can have twists and turns,making their treatment extremely difficult.Available wound care solutions only cater to superficial wounds,and untreated tunneling wounds pose major health concerns.This study aims to fulfill this challenge by fabricating tunnel wound fillers(TWFs)made of natural polymers that mimic the dermal extracellular matrix.In this study,cellulose microfibers(CMFs)derived from banana stem and fish skin-derived collagen were used to formulate bio-inks with varying CMF contents(25,50,and 75 mg).Tri-layered(CMFs,primary and secondary collagen coatings),drug-eluting(Baneocin),and cell-laden(human mesenchymal stem cells)TWFs were three-dimensional(3D)-printed and extensively characterized.CMFs showed the most suitable rheological properties for 3D printing at 50 mg concentration.The Alamar Blue data showed significantly increased cell proliferation from Day 1 to Day 7,and scratch tests used to evaluate in vitro wound healing revealed that the best coverage of the wound area was achieved using CMFs in combination with collagen and alginate.Finally,the TWF showed promising capability and tunability in terms of wound shape and size upon testing on a chicken tissue model.The results demonstrate the tremendous potential of TWFs in treating deep tunneling wounds with unique advantages,such as patient-specific customization,good wound exudate absorption capability while releasing wound healing drugs,and the inclusion of stem cells for accelerated healing and tissue regeneration.展开更多
We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembl...We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembled CoPc monolayer is fabricated on Au(111) substrate and resolved by ECSTM in 0.1 M KOH electrolyte.The OH^(-)adsorption on CoPc prior to OER is observed in ECSTM images.During OER,the generated O_(2) adsorbed on Co Pc is observed in the CoPc monolayer.Potential step experiment is employed to monitor the desorption of OER-generated O_(2) from CoPc,which results in the decreasing surface coverage of CoPc-O_(2) with time.The rate constant of O_(2) desorption is evaluated through data fitting.The insights into the dynamics of Co-O_(2) dissociation at the molecular level via in situ imaging help understand the role of Co-O_(2) in oxygen reduction reaction(ORR) and OER.展开更多
Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc...Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.展开更多
An empirical expression for the direct tunneling (DT) current is obtained.This expression can be used to calculate the DT current for nMOSFETs with ultra thin oxide when the oxide thickness is considered as an adjust...An empirical expression for the direct tunneling (DT) current is obtained.This expression can be used to calculate the DT current for nMOSFETs with ultra thin oxide when the oxide thickness is considered as an adjustable parameter.The results have good agreement with the experimental data.And the oxide thickness obtained is less than the value acquired from the capacitance voltage( C V )method.展开更多
It is a trend of virtual private networks (VPNs) to be used for information exchange between enterprises, branches of enterprises and enterprises and their employees instead of traditional dial networks and leased lin...It is a trend of virtual private networks (VPNs) to be used for information exchange between enterprises, branches of enterprises and enterprises and their employees instead of traditional dial networks and leased lines. The tunneling technique is the key technique to implement VPN. In this paper, with the VPN implementation requirements in mind, we perform a comparative research on the existing tunneling protocols including GRE, L2TP, IPSec and IP/IP. We also propose an integrated scheme of tunneling mechanism that supports VPN under the current condition.展开更多
A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open lo...A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open loop operation is tested in the air by HP4145B semiconductor analyzer,which verifies the presence of tunneling current and the exponential relationship between tunneling gap and tunneling current.The tunneling barrier is extrapolated to be from 1.182 to 2.177eV.The threshold voltages are tested to be 14~16V for most of the devices.The threshold voltages under -1,0,and +1g are tested,respectively,which shows the sensitivity of the accelerometer is about 87mV/g.展开更多
Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the i...Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the investigation into the tunneling current indicates that the tunneling effect is of great importance under reverse biases.The Schottky barrier diode current due to Schottky effect is in agreement with the theoretical one.The barrier lowering is found a profound effect on the current transport at the metal semiconductor interface.展开更多
A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, wher...A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.展开更多
A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a ...A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.展开更多
The effect of neutral trap on tunneling currentin ultrathin MOSFETs is investigated by num erical analy- sis.The barrier variation arisen by neutral trap in oxide layer is described as a rectangular potential well in...The effect of neutral trap on tunneling currentin ultrathin MOSFETs is investigated by num erical analy- sis.The barrier variation arisen by neutral trap in oxide layer is described as a rectangular potential well in the con- duction band of Si O2 .The different barrier variation of an ultrathin metal- oxide- sem iconductor(MOS) structure with oxide thickness of4nm is numerically calculated.It is shown that the effect of neutral trap on tunneling cur- rent can not be neglected.The tunneling current is increased when the neutral trap exists in the oxide layer.This simple m odel can be used to understand the occurring mechanism of stress induced leakage current.展开更多
Based on the orthodox theory,a model of a single electron transistor (SET) of metallic tunneling junctions is built using the master equation method. Several parameters of the device, such as capacitance, resistance...Based on the orthodox theory,a model of a single electron transistor (SET) of metallic tunneling junctions is built using the master equation method. Several parameters of the device, such as capacitance, resistance and temperature,are input into the model and thus the I-V curves are attained. These curves are consistent with those from other experiments; therefore, the model is verified. However, there still exists a difference between simulated results and experimental results,mainly comes from the stationary case of the master equation. In other words, precision of simulated results would be increased if the transient case of the master equation is considered. Moreover, the current increases exponentially at higher drain voltages, which is due to the fact that the barrier suppression is caused by the image charge potential.展开更多
A novel flash memory cell with stacked structure (Si substrate/SiGe quantum dots/tunneling oxide/polySi floating gate) is proposed and demonstrated to achieve enhanced F-N tunneling for both programming and erasing....A novel flash memory cell with stacked structure (Si substrate/SiGe quantum dots/tunneling oxide/polySi floating gate) is proposed and demonstrated to achieve enhanced F-N tunneling for both programming and erasing. Simulation results indicate the new structure provides high speed and reliability. Experimental results show that the operation voltage can be as much as 4V less than that of conventional full F-N tunneling NAND memory cells. Memory cells with the proposed structure can achieve higher speed, lower voltage, and higher reliability.展开更多
A Schottky gate resonant tunneling transistor (SGRTT) is fabricated. Relying on simulation by ATLAS software,we find that the gate voltages can be used to control the current of SGRTT when the emitter terminal is gr...A Schottky gate resonant tunneling transistor (SGRTT) is fabricated. Relying on simulation by ATLAS software,we find that the gate voltages can be used to control the current of SGRTT when the emitter terminal is grounded and a positive bias voltage is applied to the collector terminal. When the collector terminal is grounded, the gate voltages can control the peak voltage. As revealed by measurement results, the reason is that the gate voltages and the electric field distribution on emitter and collector terminal change the distribution of the depletion region.展开更多
This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an ...This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.展开更多
文摘In the original publication of my article,“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”,which was published in Chinese Journal of Chemical Physics,Vol.37,No.4,pages 497-504,I have identified an innegligible error that requires correction.I apologize for any inconvenience and appreciate the opportunity to clarify it in the following:Error Description:In page 499,since the words “FIG.2(b,d)”in line 78 are mentioned earlier than the words“FIG.1(a)”in line 82 in the submitted manuscript,the order of Figure 1 and Figure 2 are changed automatically in the official publication of the article,which makes the logical relationship of the article confused to a significant degree.
基金supported by the National Natural Science Foundation of China(Grant Nos.11774303 and 11574373)the financial support from“15th Graduate Research Innovation Project”from Yunnan Universityfinancial support from the Joint Fund of Yunnan Provincial Science and Technology Department(Grant No.2019FY003008)。
文摘For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relationship between spin polarization of ferromagnet and the insulating barrier thickness in MTJs.Here,we investigate the influence of alumina barrier thickness on tunneling spin polarization(TSP)through a combination of theoretical calculations and experimental verification.Our simulating results reveal a significant impact of barrier thickness on TSP,exhibiting an oscillating decay of TSP with the barrier layer thinning.Experimental verification is realized on FeNi/AlO_(x)/Al superconducting tunnel junctions to directly probe the spin polarization of FeNi ferromagnet using Zeeman-split tunneling spectroscopy technique.These findings provide valuable insights for designs of high-performance spintronic devices,particularly in applications such as magnetic random access memories,where precise control over the insulating barrier layer is crucial.
基金Project supported by the College Student Innovation Project(Grant No.202310299517X)the Scientific Research Project of Jiangsu University(Grant No.22A716).
文摘The tunneling of the massless Dirac fermions through a vector potential barrier are theoretically investigated, wherethe vector potential can be introduced by very high and very thin (d-function) magnetic potential barriers. We showthat, distinct from the previously studied electric barrier tunneling, the vector potential barriers are more transparent forpseudospin-1/2 Dirac fermions but more obstructive for pseudospin-1 Dirac fermions. By tuning the height of the vectorpotential barrier, the pseudospin-1/2 Dirac fermions remain transmitted, whereas the transmission of the pseudospin-1Dirac fermions is forbidden, leading to a pseudospin filtering effect for massless Dirac fermions.
基金supported by the National Natural Science Foundation of China(No.12172297)the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ22106)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2023055)。
文摘Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application prospects.In this study,the structure of the unit cell is designed,and the low frequency(<1 k Hz)valley locked waveguide is realized through the creation of a phononic crystal plate with a topological phase transition interface.The defect immunity of the topological waveguide is verified,that is,the wave can propagate along the original path in the cases of impurities and disorder.Then,the tunneling phenomenon is introduced into the topological valley-locked waveguide to analyze the wave propagation,and its potential applications(such as signal separators and logic gates)are further explored by designing phononic crystal plates.This research has broad application prospects in information processing and vibration control,and potential applications in other directions are also worth exploring.
基金supported by the start-up funds from New York University Abu Dhabipartially carried out using the Core Technology Platforms resources at New York University Abu Dhabi。
文摘Tunneling wounds create passageways underneath the skin surface with varying sizes and shapes and can have twists and turns,making their treatment extremely difficult.Available wound care solutions only cater to superficial wounds,and untreated tunneling wounds pose major health concerns.This study aims to fulfill this challenge by fabricating tunnel wound fillers(TWFs)made of natural polymers that mimic the dermal extracellular matrix.In this study,cellulose microfibers(CMFs)derived from banana stem and fish skin-derived collagen were used to formulate bio-inks with varying CMF contents(25,50,and 75 mg).Tri-layered(CMFs,primary and secondary collagen coatings),drug-eluting(Baneocin),and cell-laden(human mesenchymal stem cells)TWFs were three-dimensional(3D)-printed and extensively characterized.CMFs showed the most suitable rheological properties for 3D printing at 50 mg concentration.The Alamar Blue data showed significantly increased cell proliferation from Day 1 to Day 7,and scratch tests used to evaluate in vitro wound healing revealed that the best coverage of the wound area was achieved using CMFs in combination with collagen and alginate.Finally,the TWF showed promising capability and tunability in terms of wound shape and size upon testing on a chicken tissue model.The results demonstrate the tremendous potential of TWFs in treating deep tunneling wounds with unique advantages,such as patient-specific customization,good wound exudate absorption capability while releasing wound healing drugs,and the inclusion of stem cells for accelerated healing and tissue regeneration.
基金National Key R&D Program of China (2021YFA1501002)National Natural Science Foundation of China (22132007)。
文摘We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembled CoPc monolayer is fabricated on Au(111) substrate and resolved by ECSTM in 0.1 M KOH electrolyte.The OH^(-)adsorption on CoPc prior to OER is observed in ECSTM images.During OER,the generated O_(2) adsorbed on Co Pc is observed in the CoPc monolayer.Potential step experiment is employed to monitor the desorption of OER-generated O_(2) from CoPc,which results in the decreasing surface coverage of CoPc-O_(2) with time.The rate constant of O_(2) desorption is evaluated through data fitting.The insights into the dynamics of Co-O_(2) dissociation at the molecular level via in situ imaging help understand the role of Co-O_(2) in oxygen reduction reaction(ORR) and OER.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12374196,92165201,11634011,and 22109153)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302800)+4 种基金the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000006 and WK3430000003)the Fund of Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000)the University Synergy Innovation Program of Anhui Province,China (Grant No.GXXT-2022-008)the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No.KY2060000241)。
文摘Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.
文摘An empirical expression for the direct tunneling (DT) current is obtained.This expression can be used to calculate the DT current for nMOSFETs with ultra thin oxide when the oxide thickness is considered as an adjustable parameter.The results have good agreement with the experimental data.And the oxide thickness obtained is less than the value acquired from the capacitance voltage( C V )method.
文摘It is a trend of virtual private networks (VPNs) to be used for information exchange between enterprises, branches of enterprises and enterprises and their employees instead of traditional dial networks and leased lines. The tunneling technique is the key technique to implement VPN. In this paper, with the VPN implementation requirements in mind, we perform a comparative research on the existing tunneling protocols including GRE, L2TP, IPSec and IP/IP. We also propose an integrated scheme of tunneling mechanism that supports VPN under the current condition.
文摘A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open loop operation is tested in the air by HP4145B semiconductor analyzer,which verifies the presence of tunneling current and the exponential relationship between tunneling gap and tunneling current.The tunneling barrier is extrapolated to be from 1.182 to 2.177eV.The threshold voltages are tested to be 14~16V for most of the devices.The threshold voltages under -1,0,and +1g are tested,respectively,which shows the sensitivity of the accelerometer is about 87mV/g.
文摘Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the investigation into the tunneling current indicates that the tunneling effect is of great importance under reverse biases.The Schottky barrier diode current due to Schottky effect is in agreement with the theoretical one.The barrier lowering is found a profound effect on the current transport at the metal semiconductor interface.
文摘A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.
文摘A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.
文摘The effect of neutral trap on tunneling currentin ultrathin MOSFETs is investigated by num erical analy- sis.The barrier variation arisen by neutral trap in oxide layer is described as a rectangular potential well in the con- duction band of Si O2 .The different barrier variation of an ultrathin metal- oxide- sem iconductor(MOS) structure with oxide thickness of4nm is numerically calculated.It is shown that the effect of neutral trap on tunneling cur- rent can not be neglected.The tunneling current is increased when the neutral trap exists in the oxide layer.This simple m odel can be used to understand the occurring mechanism of stress induced leakage current.
文摘Based on the orthodox theory,a model of a single electron transistor (SET) of metallic tunneling junctions is built using the master equation method. Several parameters of the device, such as capacitance, resistance and temperature,are input into the model and thus the I-V curves are attained. These curves are consistent with those from other experiments; therefore, the model is verified. However, there still exists a difference between simulated results and experimental results,mainly comes from the stationary case of the master equation. In other words, precision of simulated results would be increased if the transient case of the master equation is considered. Moreover, the current increases exponentially at higher drain voltages, which is due to the fact that the barrier suppression is caused by the image charge potential.
文摘A novel flash memory cell with stacked structure (Si substrate/SiGe quantum dots/tunneling oxide/polySi floating gate) is proposed and demonstrated to achieve enhanced F-N tunneling for both programming and erasing. Simulation results indicate the new structure provides high speed and reliability. Experimental results show that the operation voltage can be as much as 4V less than that of conventional full F-N tunneling NAND memory cells. Memory cells with the proposed structure can achieve higher speed, lower voltage, and higher reliability.
文摘A Schottky gate resonant tunneling transistor (SGRTT) is fabricated. Relying on simulation by ATLAS software,we find that the gate voltages can be used to control the current of SGRTT when the emitter terminal is grounded and a positive bias voltage is applied to the collector terminal. When the collector terminal is grounded, the gate voltages can control the peak voltage. As revealed by measurement results, the reason is that the gate voltages and the electric field distribution on emitter and collector terminal change the distribution of the depletion region.
文摘This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.