期刊文献+
共找到1,192篇文章
< 1 2 60 >
每页显示 20 50 100
Probabilistic analysis of tunnel face seismic stability in layered rock masses using Polynomial Chaos Kriging metamodel 被引量:2
1
作者 Jianhong Man Tingting Zhang +1 位作者 Hongwei Huang Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2678-2693,共16页
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines... Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction. 展开更多
关键词 tunnel face stability Layered rock masses Polynomial Chaos Kriging(PCK) Sensitivity index Seismic loadings
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
2
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
Stability analysis of tunnel face reinforced with face bolts
3
作者 TIAN Chongming JIANG Yin +3 位作者 YE Fei OUYANG Aohui HAN Xingbo SONG Guifeng 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2445-2461,共17页
Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systemat... Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design. 展开更多
关键词 Highway tunnels tunnel face face bolts Limit equilibrium method Slice method
下载PDF
Numerical simulation for determining three zones in the goaf at a fully-mechanized coal face 被引量:10
4
作者 HE Xiao-gang ZHANG Ren-wei +3 位作者 PEI Xiao-dong SUN Yong TONG Bo-gen HUANG Hua-shan 《Journal of China University of Mining and Technology》 EI 2008年第2期199-203,共5页
According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-con... According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf. 展开更多
关键词 fully-mechanized coal face spontaneous combustion filtration flow field limit of rate of speed
下载PDF
Characteristics of Gas Emission at Super-Length Fully-Mechanized Top Coal Caving Face 被引量:10
5
作者 XU Jia-lin YU Bei-jian +1 位作者 LOU Jin-fu WANG Dong-ping 《Journal of China University of Mining and Technology》 EI 2007年第4期447-452,共6页
Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of workin... Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant. 展开更多
关键词 super-length fully-mechanized top coal caving face characteristics of gas emission strata movement
下载PDF
Inverse reliability analysis and design for tunnel face stability considering soil spatial variability
6
作者 Zheming Zhang Jian Ji +1 位作者 Xiangfeng Guo Siang Huat Goh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1552-1564,共13页
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran... The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata. 展开更多
关键词 Limit analysis tunnel face stability Spatial variability HLRF algorithm Inverse reliability method
下载PDF
Patterns governing distribution of surrounding-rock stress and strata behaviors of fully-mechanized caving faces 被引量:3
7
作者 谢广祥 刘全明 +1 位作者 查文华 华心祝 《Journal of Coal Science & Engineering(China)》 2004年第1期5-8,共4页
By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behavior... By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behaviors. It shows that patterns governing displacement of FMC roadway surrounding rocks and those governing deformation of supports are basically the same along the strike, but the displacements vary greatly. The front stresses affect greater areas than the lateral stresses and their limit widths of equilib-rium zones and K are almost similar. The stress transmits very deep. Our findings offer scientific basis on which to determine parameters for coal pillar retaining and for roadway out-laying, thus increasing the recovery ratio and improving the maintenance of roadway. 展开更多
关键词 fully-mechanized caving face (FMC faces) stress surrounding-rock stress
下载PDF
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
8
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
下载PDF
Analysis of Noise at Coal Face by Fully-Mechanized Coal Winning Technology 被引量:1
9
作者 刘照鹏 《Journal of China University of Mining and Technology》 2003年第1期113-116,共4页
The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis o... The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency. 展开更多
关键词 noise coal face fully-mechanized coal winning technology ANALYSIS
下载PDF
Mechanical analysis on deformation of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face 被引量:1
10
作者 朱川曲 缪协兴 刘泽 《Journal of Coal Science & Engineering(China)》 2008年第1期24-28,共5页
Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established ... Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF. 展开更多
关键词 road-in packing of gob-side entry retaining in fully-mechanized sub-level cav-ing face (RPGERFCF) deformation of surrounding rock mechanical model mechanicalanalysis
下载PDF
Reliability Analysis of Production System of Fully-Mechanized Face Based on Output Statistic
11
作者 CAI Qing-xiang LI Nai-liang 《Journal of China University of Mining and Technology》 EI 2005年第4期275-278,共4页
Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by... Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by means of system faults statistic. Based on the viewpoint that shift output of fully-mechanized face is the result of various random factors’ synthetical influence, the process of how to analyze its reliability was deduced by using probability theory, symbolic statistics theory and systematic reliability theory combined with the concrete case study in this paper. And it has been proved that this method is feasible and valuable. 展开更多
关键词 OUTPUT ANALYSIS fully-mechanized face RELIABILITY
下载PDF
Analysis and control of hydraulic support stability in fully-mechanized longwall face to the dip with great mining height
12
作者 华心祝 王家臣 《Journal of Coal Science & Engineering(China)》 2008年第3期399-402,共4页
The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single suppor... The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability.. 展开更多
关键词 longwall face to the dip fully-mechanized working face with great mining height supports stability control
下载PDF
Analysis on distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face
13
作者 Zhu Chuanqu Liu Ze +1 位作者 Wang Weijun Zhang Daobing 《Engineering Sciences》 EI 2009年第3期23-27,共5页
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha... The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face. 展开更多
关键词 road-in packing for gob-side entry retaining in fully-mechanized caving face integrated coal beside the roadway abutment pressure damage mechanics
下载PDF
Design Theory of Full Face Rock Tunnel Boring Machine Transition Cutter Edge Angle and Its Application 被引量:25
14
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期541-546,共6页
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of... At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased. 展开更多
关键词 disc cutter three-dimensional mode edge angle full face rock tunnel boring machine (TBM) flat-face cutterhead
下载PDF
Wear Analysis of Disc Cutters of Full Face Rock Tunnel Boring Machine 被引量:19
15
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1294-1300,共7页
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length... Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters. 展开更多
关键词 full face rock tunnel boring machine disc cutter radial wear coefficient axial wear coefficient trajectory wear coefficient
下载PDF
Analysis of tunnel face stability with advanced pipes support 被引量:15
16
作者 AN Yong-lin ZHOU Jin +1 位作者 OUYANG Peng-bo LI Jia-hao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期604-617,共14页
To keep the tunnel face stable is very important for tunnel construction.In this paper,the tunnel face stability under the advanced pipe was analyzed using the Winkler foundation model and rigid limit equilibrium.The ... To keep the tunnel face stable is very important for tunnel construction.In this paper,the tunnel face stability under the advanced pipe was analyzed using the Winkler foundation model and rigid limit equilibrium.The tunnel face deformation characteristics were also analyzed using the numerical simulation.The influence of parameters on the deflection of the pipe roof and the stability of the tunnel face were discussed.The results show that the tunnel face stability can be improved through increasing the pipe diameter,decreasing the initial displacement at the beginning of the pipe seat,and adopting the short round length and small excavation height.With the increase of tunnel burial depth,the safety factor of tunnel face stability first decreases,then increases,and then remains unchanged.The deformation at the center of the tunnel face is larger than the deformation at the surround sides and at the corner.The horizontal displacement varies little with the increasing of the pipe length.The horizontal displacement at the center of the tunnel face increases with the increase of the pipe ring spacing and the pipe longitudinal spacing.There is an optimum external angle. 展开更多
关键词 tunnel face stability advanced pipe Winkler foundation model numerical simulation
下载PDF
Face stability analysis for a longitudinally inclined tunnel in anisotropic cohesive soils 被引量:8
17
作者 HUANG Qi ZOU Jin-feng QIAN Ze-hang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1780-1793,共14页
A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on ... A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on the kinematic approach of limit analysis and the discretization technique, an improved three-dimensional CVF model for longitudinally inclined tunnels driven by pressurized shields is proposed. With the proposed model, the critical support pressure acted on tunnel face is determined by the work-balance equation. A serial of finite element numerical models are conducted to validate the proposed model. Finally, the effects of tunnel inclination angles, several dimensionless parameters as well as soil anisotropy on the critical support pressure are investigated. The numerical results show that the effects of the soil anisotropy and the tunnel inclination angle on tunnel faces should be considered in the actual design of tunneling engineering. 展开更多
关键词 limit analysis tunnel face cohesive soils inclination angle ANISOTROPY
下载PDF
Face stability of shield tunnels considering a kinematically admissible velocity field of soil arching 被引量:5
18
作者 Wei Li Chengping Zhang +2 位作者 Dingli Zhang Zijian Ye Zhibiao Tan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期505-526,共22页
Existing mechanism of simulating soil movement at tunnel face is generally based on the translational or rotational velocity field,which is,to some extent,different from the real soil movement in the arching zone.Nume... Existing mechanism of simulating soil movement at tunnel face is generally based on the translational or rotational velocity field,which is,to some extent,different from the real soil movement in the arching zone.Numerical simulations are carried out first to investigate the characteristics of the velocity distribution at tunnel face and above tunnel vault.Then a new kinematically admissible velocity field is proposed to improve the description of the soil movement according to the results of the numerical simulation.Based on the proposed velocity field,an improved failure mechanism is constructed adopting the spatial discretization technique,which takes into account soil arching effect and plastic deformation within soil mass.Finally,the critical face pressure and the proposed mechanism are compared with the results of the numerical simulation,existing analytical studies and experimental tests to verify the accuracy and improvement of the presented method.The proposed mechanism can serve as an alternative approach for the face stability analysis. 展开更多
关键词 tunnel face stability Velocity field Failure pattern Improved failure mechanism Critical face pressure
下载PDF
Energy analysis of face stability of deep rock tunnels using nonlinear Hoek-Brown failure criterion 被引量:5
19
作者 张佳华 李永鑫 许敬叔 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3079-3086,共8页
The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the anal... The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the analytical solutions of collapse pressure were derived through utilizing the virtual power principle in the case of pore water, and the optimal solutions of collapse pressure were obtained by using the optimization programs of mathematical model with regard of a maximum problem. In comparison with existing research with the same parameters, the consistency of change rule shows the validity of the proposed method. Moreover, parametric study indicates that nonlinear Hoek-Brown failure criterion and pore water pressure have great influence on collapse pressure and failure shape of tunnel faces in deep rock masses, particularly when the surrounding rock is too weak or under the condition of great disturbance and abundant ground water, and in this case, supporting measures should be intensified so as to prevent the occurrence of collapse. 展开更多
关键词 tunnel face limit analysis failure criterion pore water pressure collapse pressure
下载PDF
Waste-filling in fully-mechanized coal mining and its application 被引量:27
20
作者 MIAO Xie-xing ZHANG Ji-xiong FENG Mei-mei 《Journal of China University of Mining and Technology》 EI 2008年第4期479-482,共4页
A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-us... A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae. 展开更多
关键词 fully-mechanized coal mining coal mining with gangue backfilling mining under buildings railways and water bodies rock pressure around coal face control of ground subsidence
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部