When mining the fully-mechanized longwall caving face along strike, the unstable equipment, the low top-coal recovery ratio and the difficulty in controlling surrounding rock may occur due to large dip angle. Consider...When mining the fully-mechanized longwall caving face along strike, the unstable equipment, the low top-coal recovery ratio and the difficulty in controlling surrounding rock may occur due to large dip angle. Considering the effects of strike angle on support stability, the ‘‘support-surrounding rock"mechanical models of support topple and support slip were established in this paper. On the basis, the influencing factors of support stability were analyzed and the technical measures of controlling support and surrounding rock stability were put forward. Then the loose particles simulation experiment was conducted to analyze the impacts of caving directions and methods on the top-coal recovery in large dip angle fully-mechanized caving face. Finally, the ‘‘upward sequence and double-openings doublerounds" caving technology was determined. The research results are of great scientific significance and practical values to improve large dip thick seam mining technology.展开更多
According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-con...According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.展开更多
Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of workin...Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.展开更多
By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behavior...By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behaviors. It shows that patterns governing displacement of FMC roadway surrounding rocks and those governing deformation of supports are basically the same along the strike, but the displacements vary greatly. The front stresses affect greater areas than the lateral stresses and their limit widths of equilib-rium zones and K are almost similar. The stress transmits very deep. Our findings offer scientific basis on which to determine parameters for coal pillar retaining and for roadway out-laying, thus increasing the recovery ratio and improving the maintenance of roadway.展开更多
The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis o...The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.展开更多
Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established ...Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF.展开更多
The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single suppor...The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..展开更多
Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by...Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by means of system faults statistic. Based on the viewpoint that shift output of fully-mechanized face is the result of various random factors’ synthetical influence, the process of how to analyze its reliability was deduced by using probability theory, symbolic statistics theory and systematic reliability theory combined with the concrete case study in this paper. And it has been proved that this method is feasible and valuable.展开更多
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha...The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.展开更多
To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of over...To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.展开更多
To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-...To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.展开更多
Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition...Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition of intermittent ventilation in the tunnel.According to the actual parameters of the tunnel,a numerical calculation model was established.The spatial-temporal variation of gas concentration in the fully mechanized working face under the condition of intermittent ventilation was calculated by using the commercial package Fluent,and the correctness of the calculated results was verified by the actual monitoring data of the mine.Firstly,the gas concentration was calculated under different wind velocities at driving face in coal tunnel,and the result showed that the gas can be carried effectively by the wind when the wind velocity is about 1.8 m/s.Secondly,the distributions of wind velocity and gas concentration at driving face were studied at 1.8 m/s,and the result showed the gas concentration increased gradually with the distance close to the outlet,but the gas concentration almost kept constant at the height of driving face.Thirdly,the distribution of gas concentration was investigated with time after the ventilation was stopped and restarted,respectively.The gas concentration of test point gradually increased with the increment of downtime,when the downtime was 40 min,the gas concentration of test point 3 reached the maximum value.The gas concentration increased gradually and reached the maximum after10 min of restart,then sharply decreased and kept constant.展开更多
A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-us...A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.展开更多
In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal...In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal section(CDRS)of DCCP,a general equation is derived from the principle of force equilibrium.According to CDRS structure parameters and fan running parameters,the general equation is simplified,and the simplest equation is calculated numerically by MATLAB.The calculation results illustrate that increasing quantity of air current is against dust removal,but it is beneficial to dust removal by increasing the radius of driven spiral blade and increasing the particle diameter of coal dust.The conclusions show that the dust-collecting structure parameters coupled with the fan running parameters is a novel optimization approach to dust-collection fan for working and heading faces,which is especially suitable for Chinese underground mines.展开更多
In the procedure of coal industry production, the losses of the persons and economy caused by the gas explosion accidents are most serious, therefore, prevention and control of the gas explosion accident of the coal m...In the procedure of coal industry production, the losses of the persons and economy caused by the gas explosion accidents are most serious, therefore, prevention and control of the gas explosion accident of the coal mines is an important issue needed to be solved urgently in the safety production work of our coal mines. The characteristic of time structure variation index characteristic was analyzed about gas concentration sequence of three measure points in the NO. 1I 1024 working face. It was found that the value of time variation about three measure points was mostly 1〈δ≤1.5, and gas emission presented consistently strong-clustering state twice, and the value of time variation presented continuous variation state in the active stage of gas concentration. Complex characteristics of the value indicated gas emission was continuously variable in time or space and presented the complex nonlinear characteristics. So the characteristic about gas emission system was correctly depicted and analyzed to gas emission system according to the relation of its state variation and essential of nonlinear system. The result also provided reliable warranty for its continued nonlinear research on gas emission.展开更多
To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden ...To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.展开更多
Noise from the machine on coal working face seriously influenced the miners' physical and mental health, and also, due to the noise, there may be a major hidden danger in safety from accidents as all safety warnin...Noise from the machine on coal working face seriously influenced the miners' physical and mental health, and also, due to the noise, there may be a major hidden danger in safety from accidents as all safety warning signals may be masked by the noise. This paper summarized the features of mine environmental noise on working face, such as the variety of noise sources, the continuity of high intensity and slow attenuation in narrow space, etc.The main projects about noise forecasting and controlling on working face was emphatically expounded;the development status about mines machinery noise mechanism and environmental noise acoustic characteristics of space-time of these main research topics were also introduced.展开更多
Brown & Levinson's face theory is an important theory in Pragmatics and it is an influential theory in expounding the phenomenon of politeness. Through an analysis of the functions of "face" in English literary wo...Brown & Levinson's face theory is an important theory in Pragmatics and it is an influential theory in expounding the phenomenon of politeness. Through an analysis of the functions of "face" in English literary works, this article intends to shed new lights on literary pragmatics.展开更多
In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the e...In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the error between calculating and real values. on the base of the application of the formulas mentioned above, the problem about lack of airflow in the working face 2712 was solved successfully in Xiandewang Coal Mine.展开更多
The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to great...The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to greatly increase probability of accident occurrence. To reveal the distribution of high stress around working faces, we put forward the mode-I-crack compression model. In this model, the goaf following a working face is regarded as a mode-I crack in an infinite plate, and the self-gravity of overlaying strata is transformed into an uniform pressure applied normal to the upper edge of the model crack. Solving this problem is based on the Westergaard complex stress function. For comparison, the software RFPA-2D is also employed to simulate the same mining problem, and furthermore extendedly to calculate the stress interference induced by the simultaneous advances of two different working faces. The results show that, the area close to a working face or the goaf tail has the maximum stress, and the stress is distributed directly proportional to the square root of the advance and inversely proportional to the square root of the distance to the working face. The simultaneous advances of two neighboring working faces in different horizontals can lead to extremely high resultant stress in an interference area.展开更多
基金provided by the National Key Basic Research Program of China (973 Program) (No. 2015CB251600)the Qing Lan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘When mining the fully-mechanized longwall caving face along strike, the unstable equipment, the low top-coal recovery ratio and the difficulty in controlling surrounding rock may occur due to large dip angle. Considering the effects of strike angle on support stability, the ‘‘support-surrounding rock"mechanical models of support topple and support slip were established in this paper. On the basis, the influencing factors of support stability were analyzed and the technical measures of controlling support and surrounding rock stability were put forward. Then the loose particles simulation experiment was conducted to analyze the impacts of caving directions and methods on the top-coal recovery in large dip angle fully-mechanized caving face. Finally, the ‘‘upward sequence and double-openings doublerounds" caving technology was determined. The research results are of great scientific significance and practical values to improve large dip thick seam mining technology.
文摘According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.
基金Projects 50374066 supported by the National Natural Science Foundation of ChinaNCET-05-0478 by the Program for New Century Excellent Talents in University
文摘Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.
基金Supported by the Natural Sciences of Anhui Provincial Education Division(2002kj286ZD,01044403)
文摘By employing numerical modeling, similar material simulation and comprehen-sive field observation, investigations were made and patterns were obtained governing surrounding-rock stress distribution and strata behaviors. It shows that patterns governing displacement of FMC roadway surrounding rocks and those governing deformation of supports are basically the same along the strike, but the displacements vary greatly. The front stresses affect greater areas than the lateral stresses and their limit widths of equilib-rium zones and K are almost similar. The stress transmits very deep. Our findings offer scientific basis on which to determine parameters for coal pillar retaining and for roadway out-laying, thus increasing the recovery ratio and improving the maintenance of roadway.
文摘The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.
基金the National Science Foundation of China(50674046)National Science Important Foundation(50634050)Hunan Science Foundation(06JJ50092)
文摘Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF.
文摘The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..
基金Project 50474069 supported by National Natural Science Foundation of China Project 20020290005 supported by Specialized Research Fund for theDoctoral Program of Higher Education
文摘Production system of fully-mechanized face is a complicated system composed of human, machine and environment, meantime influenced by various random factors. Analyzing the reliability of system needs plentiful data by means of system faults statistic. Based on the viewpoint that shift output of fully-mechanized face is the result of various random factors’ synthetical influence, the process of how to analyze its reliability was deduced by using probability theory, symbolic statistics theory and systematic reliability theory combined with the concrete case study in this paper. And it has been proved that this method is feasible and valuable.
基金Supported by the National Science Foundation of China (50874042, 50674046)National Science Important Foundation (50634050)Hunan Science Foundation (06JJ50092)
文摘The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.
基金supported by the Key Project of National Natural Science Foundation of China (No. 51634001)the National Natural Science Foundation of China (Nos. 51404269 and 51674253)+1 种基金the State Key Research Development Program of China (No. 2016YFC0801403)the Key Research Development Program of Jiangsu Province, China (No. BE2015040)
文摘To study the occurrence mechanism of rock burst during mining the irregular working face,the study took irregular panel 7447 near fault tectonic as an engineering background.The spatial fracture characteristic of overlying strata was analyzed by Winkler elastic foundation beam theory.Furthermore,the influence law of panel width to suspended width and limit breaking span of key strata were also analyzed by thin plate theory.Through micro-seismic monitoring,theoretical analysis,numerical simulation and working resistance of support of field measurement,this study investigated the fracture characteristic of overlying strata and mechanism of rock burst in irregular working face.The results show that the fracture characteristic of overlying strata shows a spatial trapezoid structure,with the main roof being as an undersurface.The fracture form changes from vertical‘‘O-X"type to transverse‘‘O-X"type with the increase of trapezoidal height.From the narrow mining face to the wide mining face,the suspended width of key strata is greater than its limit breaking width,and a strong dynamic load is produced by the fracture of key strata.The numerical simulation and micro-seismic monitoring results show that the initial fracture position of key strata is close to tailgate 7447.Also there is a high static load caused by fault tectonic.The dynamic and static combined load induce rock burst.Accordingly,a cooperative control technology was proposed,which can weaken dynamic load by hard roof directional hydraulic fracture and enhance surrounding rock by supporting system.
基金Project 50674111 supported by the National Natural Science Foundation of China
文摘To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.
基金funded by the National Natural Science Foundation of China (No. 51776217)the Fundamental Research Funds for the Central Universities of China (No. 2013XK08.2)
文摘Based on the fluid mechanics and mass transfer theory,a mathematical model of the spatial-temporal variation of gas was derived to avoid the gas accident caused by the main fan stopping ventilation under the condition of intermittent ventilation in the tunnel.According to the actual parameters of the tunnel,a numerical calculation model was established.The spatial-temporal variation of gas concentration in the fully mechanized working face under the condition of intermittent ventilation was calculated by using the commercial package Fluent,and the correctness of the calculated results was verified by the actual monitoring data of the mine.Firstly,the gas concentration was calculated under different wind velocities at driving face in coal tunnel,and the result showed that the gas can be carried effectively by the wind when the wind velocity is about 1.8 m/s.Secondly,the distributions of wind velocity and gas concentration at driving face were studied at 1.8 m/s,and the result showed the gas concentration increased gradually with the distance close to the outlet,but the gas concentration almost kept constant at the height of driving face.Thirdly,the distribution of gas concentration was investigated with time after the ventilation was stopped and restarted,respectively.The gas concentration of test point gradually increased with the increment of downtime,when the downtime was 40 min,the gas concentration of test point 3 reached the maximum value.The gas concentration increased gradually and reached the maximum after10 min of restart,then sharply decreased and kept constant.
基金supports for this work provided by Na-tional basic research program of China (No. 2007CB209400)the National Natural Science Foundation of China (No. 50834004)+1 种基金the National Natural Science Foundation of China (No. 50574090) SR Foundation of China University of Mining & Technology (No. 50634050)
文摘A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.
基金supported by the National Natural Science Foundation of China and Shenhua Group Corpo-ration Limited(U1361118)the Hunan Provincial Natural Science Foundation of China(13JJ8016)+2 种基金the State Key Laboratory for GeoMechanics and Deep Underground Engineering(SKLG-DUEK1018)the Open Research Fund Program of Hunan Province Key Laboratory of Safe Mining Techniques of Coal Mines(Hunan University of Science and Technology)(201105)the Project of Outstanding(Postgraduate)Dissertation Growth Foundation of HNUST(SNY005).
文摘In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal section(CDRS)of DCCP,a general equation is derived from the principle of force equilibrium.According to CDRS structure parameters and fan running parameters,the general equation is simplified,and the simplest equation is calculated numerically by MATLAB.The calculation results illustrate that increasing quantity of air current is against dust removal,but it is beneficial to dust removal by increasing the radius of driven spiral blade and increasing the particle diameter of coal dust.The conclusions show that the dust-collecting structure parameters coupled with the fan running parameters is a novel optimization approach to dust-collection fan for working and heading faces,which is especially suitable for Chinese underground mines.
基金Supported by Project Provincial Natural Science Foundation of Hunan (09J J3126) The Doctoral Research Activating Fund of Xiangtan University (09QDZ13, 10QDZ04)
文摘In the procedure of coal industry production, the losses of the persons and economy caused by the gas explosion accidents are most serious, therefore, prevention and control of the gas explosion accident of the coal mines is an important issue needed to be solved urgently in the safety production work of our coal mines. The characteristic of time structure variation index characteristic was analyzed about gas concentration sequence of three measure points in the NO. 1I 1024 working face. It was found that the value of time variation about three measure points was mostly 1〈δ≤1.5, and gas emission presented consistently strong-clustering state twice, and the value of time variation presented continuous variation state in the active stage of gas concentration. Complex characteristics of the value indicated gas emission was continuously variable in time or space and presented the complex nonlinear characteristics. So the characteristic about gas emission system was correctly depicted and analyzed to gas emission system according to the relation of its state variation and essential of nonlinear system. The result also provided reliable warranty for its continued nonlinear research on gas emission.
基金National Key Basic Research Program of China (973 Program) (No. 2015CB251600)the National Natural Science Foundation of China (Nos. 51327007, 51174157, and 51104118) for their support of this project
文摘To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.
基金Supported by the National Natural Science Foundation of China(50975087)the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars,Ministry of Education,China(37)Key Research Project of Hunan Province Office of Education(09A026)
文摘Noise from the machine on coal working face seriously influenced the miners' physical and mental health, and also, due to the noise, there may be a major hidden danger in safety from accidents as all safety warning signals may be masked by the noise. This paper summarized the features of mine environmental noise on working face, such as the variety of noise sources, the continuity of high intensity and slow attenuation in narrow space, etc.The main projects about noise forecasting and controlling on working face was emphatically expounded;the development status about mines machinery noise mechanism and environmental noise acoustic characteristics of space-time of these main research topics were also introduced.
文摘Brown & Levinson's face theory is an important theory in Pragmatics and it is an influential theory in expounding the phenomenon of politeness. Through an analysis of the functions of "face" in English literary works, this article intends to shed new lights on literary pragmatics.
文摘In order to develop the technology of the controlled recircuIation of airflow in the world, some formulas about the airflow recirculation system in the working face with leaking airflow are deduced,which reduces the error between calculating and real values. on the base of the application of the formulas mentioned above, the problem about lack of airflow in the working face 2712 was solved successfully in Xiandewang Coal Mine.
基金Projects 50774083 and 40811120546 supported by the National Natural Science Foundation of ChinaNCET-07-0803 by the Program for New Century Ex-cellent Talents in University 2005CB221502 by the National Basic Research Program of China
文摘The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to greatly increase probability of accident occurrence. To reveal the distribution of high stress around working faces, we put forward the mode-I-crack compression model. In this model, the goaf following a working face is regarded as a mode-I crack in an infinite plate, and the self-gravity of overlaying strata is transformed into an uniform pressure applied normal to the upper edge of the model crack. Solving this problem is based on the Westergaard complex stress function. For comparison, the software RFPA-2D is also employed to simulate the same mining problem, and furthermore extendedly to calculate the stress interference induced by the simultaneous advances of two different working faces. The results show that, the area close to a working face or the goaf tail has the maximum stress, and the stress is distributed directly proportional to the square root of the advance and inversely proportional to the square root of the distance to the working face. The simultaneous advances of two neighboring working faces in different horizontals can lead to extremely high resultant stress in an interference area.