A new technology characterized by rapidly non-mechanical settlement of unclassified tailings was developed based on a large number of tests, and dynamic settlement and continual slurry preparation without hardening in...A new technology characterized by rapidly non-mechanical settlement of unclassified tailings was developed based on a large number of tests, and dynamic settlement and continual slurry preparation without hardening in vertical sand silo were eventually realized by the addition of an effective flocculating agent (NPA). The results show that the sedimentation velocity of interface between unclassified tailings and water after the addition of NPA increases by 10-20 times, the sedimentation mass fraction of unclassified tailings at the bottom of vertical sand silo is up to 64%, the solid particle content of waste water meets the national standard, and the side influences of NPA can be removed by the addition of fly ash. The industrial test result shows that the system, the addition manner and the equipments are rational, and the vertical sand silo is used efficiently. This developed system is simple with large throughput, and the processing cost is 2.2 yuan(RMB)/m3, only 10%-20% of that by mechanical settlement.展开更多
The main advantage of tail-sitter unmanned aerial vehicle (UAV) are introduced. Three design solutions of rotor tail-sitter lift system of UAV have been presented and the respective control strategies and characterist...The main advantage of tail-sitter unmanned aerial vehicle (UAV) are introduced. Three design solutions of rotor tail-sitter lift system of UAV have been presented and the respective control strategies and characteristics of three solutions are also analyzed in the paper, through the related experiments the design of twin-rotor lift system is verified, and its feasibility is proved. The characteristics and the applying background of the twin-rotor tail-sitter UAV are described in detail. Some useful conclusions of the lift system for tail-sitter UAV are obtained.展开更多
This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the e...This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the damaged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.展开更多
Assembly interfaces,the joint surfaces between the vertical tail and rear fuselage of a large aircraft,are thin-wall components.Their machining quality are seriously restricted by the machining vibration.To address th...Assembly interfaces,the joint surfaces between the vertical tail and rear fuselage of a large aircraft,are thin-wall components.Their machining quality are seriously restricted by the machining vibration.To address this problem,an in-process adaptive milling method is proposed for the large-scale assembly interface driven by real-time machining vibration data.Within this context,the milling operation is first divided into several process steps,and the machining vibration data in each process step is separated into some data segments.Second,based on the real-time machining vibration data in each data segment,a finite-element-unit-force approach and an optimized space–time domain method are adopted to estimate the time-varying in-operation frequency response functions of the assembly interface.These FRFs are in turn employed to calculate stability lobe diagrams.Thus,the three-dimensional stability lobe diagram considering material removal is acquired via interpolation of all stability lobe diagrams.Third,to restrain milling chatter and resonance,the cutting parameters for next process step,e.g.,spindle speed and axial cutting depth,are optimized by genetic algorithm.Finally,the proposed method is validated by a milling test of the assembly interface on a vertical tail,and the experimental results demonstrate that the proposed method can improve the machining quality and efficiency of the assembly interface,i.e.,the surface roughness reduced from 3.2μm to 1.6μm and the machining efficiency improved by 33%.展开更多
基金Project(2006BAB02A03) supported by National Key Technology Research and Development ProgramProject(2006BA02B05) supported by Key Programs for Science and Technology Development of China during the 11th Five Year
文摘A new technology characterized by rapidly non-mechanical settlement of unclassified tailings was developed based on a large number of tests, and dynamic settlement and continual slurry preparation without hardening in vertical sand silo were eventually realized by the addition of an effective flocculating agent (NPA). The results show that the sedimentation velocity of interface between unclassified tailings and water after the addition of NPA increases by 10-20 times, the sedimentation mass fraction of unclassified tailings at the bottom of vertical sand silo is up to 64%, the solid particle content of waste water meets the national standard, and the side influences of NPA can be removed by the addition of fly ash. The industrial test result shows that the system, the addition manner and the equipments are rational, and the vertical sand silo is used efficiently. This developed system is simple with large throughput, and the processing cost is 2.2 yuan(RMB)/m3, only 10%-20% of that by mechanical settlement.
文摘The main advantage of tail-sitter unmanned aerial vehicle (UAV) are introduced. Three design solutions of rotor tail-sitter lift system of UAV have been presented and the respective control strategies and characteristics of three solutions are also analyzed in the paper, through the related experiments the design of twin-rotor lift system is verified, and its feasibility is proved. The characteristics and the applying background of the twin-rotor tail-sitter UAV are described in detail. Some useful conclusions of the lift system for tail-sitter UAV are obtained.
基金supported by the National Basic Research Program of China (No 2014CB046402)the National Natural Science Foundation of China (No.51575019)111 Project of China
文摘This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the damaged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.
基金supported by the National Natural Science Foundation of China(No.51775024)the MIIT(Ministry of Industry and Information Technology)Key Laboratory of Smart Manufacturing for High-end Aerospace Products Program of China。
文摘Assembly interfaces,the joint surfaces between the vertical tail and rear fuselage of a large aircraft,are thin-wall components.Their machining quality are seriously restricted by the machining vibration.To address this problem,an in-process adaptive milling method is proposed for the large-scale assembly interface driven by real-time machining vibration data.Within this context,the milling operation is first divided into several process steps,and the machining vibration data in each process step is separated into some data segments.Second,based on the real-time machining vibration data in each data segment,a finite-element-unit-force approach and an optimized space–time domain method are adopted to estimate the time-varying in-operation frequency response functions of the assembly interface.These FRFs are in turn employed to calculate stability lobe diagrams.Thus,the three-dimensional stability lobe diagram considering material removal is acquired via interpolation of all stability lobe diagrams.Third,to restrain milling chatter and resonance,the cutting parameters for next process step,e.g.,spindle speed and axial cutting depth,are optimized by genetic algorithm.Finally,the proposed method is validated by a milling test of the assembly interface on a vertical tail,and the experimental results demonstrate that the proposed method can improve the machining quality and efficiency of the assembly interface,i.e.,the surface roughness reduced from 3.2μm to 1.6μm and the machining efficiency improved by 33%.