Objective:To determine the relations between endothelium-dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.Methods:Twenty-eight pati...Objective:To determine the relations between endothelium-dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.Methods:Twenty-eight patients with suspected coronary artery disease underwent brachial artery endothelial function test by using high-resolution B-mode ultrasound before coronary angiography(CAG)and coronary flow reserve(CFR)test by using intracoronary Doppler technique.The correlation of coronary artery dilatation induced by an increase in blood flow after intracoronary adenosine infusion and brachial artery flow-mediated dilatation(FMD) following reactive hyperemia was evaluated.The relation between the change of brachial artery blood flow and CFR was also studied.Results:There was a positive correlation between brachial FMD and percent change of coronary diameter after adenosine infusion(12.50%±9.35% vs 11.38%±7.55%,r=0.425,P=0.02).There was also a weak negative relation between brachial flow change following reactive hy-peremia and CFR(r=-0.397,P=0.04).Conclusion:There is a correlation between the coronary endo-thelial function and the CFR by ultrasonic determination of brachial flow changes following reactive hyperemia.展开更多
An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the de...An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.展开更多
The effective smoke preventing installation should have the functions such as absolute smoke insulation, going into and coming off the smoke preventing place freely, no confinement of sight. The smoke preventing ai...The effective smoke preventing installation should have the functions such as absolute smoke insulation, going into and coming off the smoke preventing place freely, no confinement of sight. The smoke preventing air curtain is the most effective. Based on the previous researches done by others, the flow field is theoretically analyzed and the calculating method for the smoke preventing air curtain of high rise buildings is inferred by means of mathematics in this paper.展开更多
Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its infl...Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.展开更多
In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection ...In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection and the mean size of the particles is changed significantly during the experiments.A simple model has been set up which takes the influence of the convection into account.The resulting growth law has been simplified for diffusion and convection dominated growth.The growth law was verified with shear experiments in a Searl-rheometer with A356 and tin-lead alloys.The experiments demonstrated that under convection the growth follows a linear time law and that the rate constant depends on the root of the shear rate.The correction of experimental results to gain the true viscosity function is demonstrated for a shear jump experiment with A356.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
Using the broadband seismic data of the regional stations in the Sichuan Digital Seismic Network and the mobile seismic stations in this region,the receiver function inversion method was adopted to study the character...Using the broadband seismic data of the regional stations in the Sichuan Digital Seismic Network and the mobile seismic stations in this region,the receiver function inversion method was adopted to study the characteristics of crustal flow and dynamic effects in Sichuan and adjacent areas. The results show that: Velocity in the crust and upper mantle of the Sichuan basin is significantly higher than that beneath the eastern margin of the Qinghai-Tibetan plateau. The velocity v_S is from 3. 6 to 3. 8km / s in the crust and4. 5- 4. 8km / s in the upper mantle beneath the basin,and there is no low-velocity layer in the crust. The lithology shows a hard block. The v_S velocity in the eastern margin of the Qinghai-Tibetan plateau is lower,with average v_Sof 3. 0- 3. 4km / s in the mid crust and4. 0- 4. 5km / s in the upper mantle. Low-velocity layers are distributed widely in the crust,most of which are in the mid crust at a depth of 20km- 40 km,and there are also a few low-velocity layers appearing in the upper crust at depths of 10km- 20 km and the lower crust at depths of 40km- 60 km. Affected by the northward pushing of the Indian plate,the eastward movement of the eastern margin of the Qinghai-Tibetan plateau is blocked by the hard Sichuan basin,producing a southward and southeastward component.Such movement process is produced by the complicated forces acting in this area. Just under the action of these forces, the eastern margin of the Qinghai-Tibetan plateau becomes a region with complicated geology and intensive earthquake activity. Obstructed by the hard Sichuan basin,the low-velocity crustal flow is delaminated and split into two or three upward and downward tributaries. The upward flow intruded into the upper crust,causing uplift of the earths urface,forming mountain crests; the downward flow intruded into the lower crust and upper mantle,resulting in thickening of the crust and depression of the Moho. The crustal flow in the eastern margin of the Qinghai-Tibetan plateau is mainly distributed along the active faults. The crustal flow flows out from the Qiangtang block in the middle part of the eastern margin of the Qinghai-Tibetan plateau,the mainstream flows along the NW-SE trending Xianshuihe fault zone,then turns NS and flows to the south along the Anninghe and Xiaojiang faults. There is another crustal flow in the north of the study area,flowing in the NE and E-W directions to the Longmenshan faults.展开更多
In this study,the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented.In the study reported herein,the fractal dimension of velo...In this study,the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented.In the study reported herein,the fractal dimension of velocity fluctuations(u′,v′,w′) and the Reynolds shear stresses(u′v′ and u′w′) of flow around a bridge pier were computed using a Fractal Interpolation Function(FIF) algorithm.The velocity fluctuations of flow along a horizontal plane above the bed were measured using Acoustic Doppler Velocity meter(ADV)and Particle Image Velocimetry(P1V).The PIV is a powerful technique which enables us to attain high resolution spatial and temporal information of turbulent flow using instantaneous time snapshots.In this study,PIV was used for detection of high resolution fractal scaling around a bridge pier.The results showed that the fractal dimension of flow fluctuated significantly in the longitudinal and transverse directions in the vicinity of the pier.It was also found that the fractal dimension of velocity fluctuations and shear stresses increased rapidly at vicinity of pier at downstream whereas it remained approximately unchanged far downstream of the pier.The higher value of fractal dimension was found at a distance equal to one times of the pier diameter in the back of the pier.Furthermore,the average fractal dimension for the streamwise and transverse velocity fluctuations decreased from the centreline to the side wall of the flume.Finally,the results from ADV measurement were consistent with the result from PIV,therefore,the ADV enables to detect turbulent characteristics of flow around a circular bridge pier.展开更多
In this paper, problems of the flow over a fat plate in the large Reynolds numbercase are studied by using the method of multiple scales ̄[1,2].We have obtained N-orderuniformly valid asymptotic solutions of the Naver...In this paper, problems of the flow over a fat plate in the large Reynolds numbercase are studied by using the method of multiple scales ̄[1,2].We have obtained N-orderuniformly valid asymptotic solutions of the Naver-Stodes equations.展开更多
Oxygen-evolving complex (OEC) protein is the original name for membrane-peripheral subunits of photosystem (PS) II. Recently, multiple isoforms and homologs for OEC proteins have been iden- tified in the chloropla...Oxygen-evolving complex (OEC) protein is the original name for membrane-peripheral subunits of photosystem (PS) II. Recently, multiple isoforms and homologs for OEC proteins have been iden- tified in the chloroplast thylakoid lumen, indicating that functional diversification has occurred in the OEC family. Gene expression profiles suggest that the Arabidopsis OEC proteins are roughly categorized into three groups: the authentic OEC group, the stressresponsive group, and the group including proteins related to the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in cyclic electron transport around PSI. Based on the above gene expression profiles, molecular functions of the OEC family proteins are discussed together with our current knowledge about their functions.展开更多
In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single partic...In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test.展开更多
The flow past a circular cylinder and airfoil with varying mathematical roughness function are numerically simulated. A new model about blowing and suction is constructed by using the concept of mathematical roughness...The flow past a circular cylinder and airfoil with varying mathematical roughness function are numerically simulated. A new model about blowing and suction is constructed by using the concept of mathematical roughness function. The flow field and the drag are investigated through this new model. By the numerical study about bluff body, some conclusions are drawn to reduce the drag.展开更多
The competition among carmakers to introduce the most innovative solutions is growing day by day. Since few years, simulation is being used widely in automotive industries. Instead of building costly prototypes and ex...The competition among carmakers to introduce the most innovative solutions is growing day by day. Since few years, simulation is being used widely in automotive industries. Instead of building costly prototypes and expending fuel for doing tests on a real engine, simulation became a good solution before taking new decisions. Concerning the study of gas dynamics and pressure wave's propagation in the intake system of an internal combustion engine, a precise modelling is needed in order to obtain good results. Unfortunately, the computational time for these simulations is considered as high compared to the real time. The main objective of the new approach presented in this paper, is to reduce simulation time of models in the internal combustion engine simulation code, allowing them to accomplish many engine simulations faster than one-dimensional non-linear approach. A transfer function is defined to link directly the relative pressure and the air mass flow rate. In a second time, the model is included into an internal combustion engine simulation code. The results obtained with this code are compared to experimental ones which are measured on a one-cylinder engine test bench. A good agreement is obtained between the experimental results and the numerical one. The model was improved by adding a transfer function for temperature evolution. The convergence time is then reduced as well as the global simulation time of the model.展开更多
The author compared in this study the effects of the treatment with integrated traditional andwestern medicine with that of routine western medicine alone on the recovery of patients with acute hyperten-sive cerebral ...The author compared in this study the effects of the treatment with integrated traditional andwestern medicine with that of routine western medicine alone on the recovery of patients with acute hyperten-sive cerebral hemorrhage. The results of the treatments showed that integrated traditional Chinese and west-ern medicine had better effect on speeding up the absorption of intracranial hematoma, elimination of en-cephaledema and restoration of neural functions than routine western medicine. There is significant differencebetween the results of the two kinds of treatment (P< 0. 05 ̄0. 01 ) , which suggested that treating patientsearly with traditional Chinese medicine greatly helps the recovery of patients with cerebral hemorrhage.展开更多
文摘Objective:To determine the relations between endothelium-dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.Methods:Twenty-eight patients with suspected coronary artery disease underwent brachial artery endothelial function test by using high-resolution B-mode ultrasound before coronary angiography(CAG)and coronary flow reserve(CFR)test by using intracoronary Doppler technique.The correlation of coronary artery dilatation induced by an increase in blood flow after intracoronary adenosine infusion and brachial artery flow-mediated dilatation(FMD) following reactive hyperemia was evaluated.The relation between the change of brachial artery blood flow and CFR was also studied.Results:There was a positive correlation between brachial FMD and percent change of coronary diameter after adenosine infusion(12.50%±9.35% vs 11.38%±7.55%,r=0.425,P=0.02).There was also a weak negative relation between brachial flow change following reactive hy-peremia and CFR(r=-0.397,P=0.04).Conclusion:There is a correlation between the coronary endo-thelial function and the CFR by ultrasonic determination of brachial flow changes following reactive hyperemia.
文摘An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.
文摘The effective smoke preventing installation should have the functions such as absolute smoke insulation, going into and coming off the smoke preventing place freely, no confinement of sight. The smoke preventing air curtain is the most effective. Based on the previous researches done by others, the flow field is theoretically analyzed and the calculating method for the smoke preventing air curtain of high rise buildings is inferred by means of mathematics in this paper.
基金support from the National Key Basic Research Program of China (2016YFC0400207)the National Natural Science Foundation of China (51439006, 91425302)the 111 Program of Introducing Talents of Discipline to Universities (B14002)
文摘Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.
文摘In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection and the mean size of the particles is changed significantly during the experiments.A simple model has been set up which takes the influence of the convection into account.The resulting growth law has been simplified for diffusion and convection dominated growth.The growth law was verified with shear experiments in a Searl-rheometer with A356 and tin-lead alloys.The experiments demonstrated that under convection the growth follows a linear time law and that the rate constant depends on the root of the shear rate.The correction of experimental results to gain the true viscosity function is demonstrated for a shear jump experiment with A356.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
基金funded by the key project of National Natural Science Foundation of China(Grant No.40839909 and 41074062)
文摘Using the broadband seismic data of the regional stations in the Sichuan Digital Seismic Network and the mobile seismic stations in this region,the receiver function inversion method was adopted to study the characteristics of crustal flow and dynamic effects in Sichuan and adjacent areas. The results show that: Velocity in the crust and upper mantle of the Sichuan basin is significantly higher than that beneath the eastern margin of the Qinghai-Tibetan plateau. The velocity v_S is from 3. 6 to 3. 8km / s in the crust and4. 5- 4. 8km / s in the upper mantle beneath the basin,and there is no low-velocity layer in the crust. The lithology shows a hard block. The v_S velocity in the eastern margin of the Qinghai-Tibetan plateau is lower,with average v_Sof 3. 0- 3. 4km / s in the mid crust and4. 0- 4. 5km / s in the upper mantle. Low-velocity layers are distributed widely in the crust,most of which are in the mid crust at a depth of 20km- 40 km,and there are also a few low-velocity layers appearing in the upper crust at depths of 10km- 20 km and the lower crust at depths of 40km- 60 km. Affected by the northward pushing of the Indian plate,the eastward movement of the eastern margin of the Qinghai-Tibetan plateau is blocked by the hard Sichuan basin,producing a southward and southeastward component.Such movement process is produced by the complicated forces acting in this area. Just under the action of these forces, the eastern margin of the Qinghai-Tibetan plateau becomes a region with complicated geology and intensive earthquake activity. Obstructed by the hard Sichuan basin,the low-velocity crustal flow is delaminated and split into two or three upward and downward tributaries. The upward flow intruded into the upper crust,causing uplift of the earths urface,forming mountain crests; the downward flow intruded into the lower crust and upper mantle,resulting in thickening of the crust and depression of the Moho. The crustal flow in the eastern margin of the Qinghai-Tibetan plateau is mainly distributed along the active faults. The crustal flow flows out from the Qiangtang block in the middle part of the eastern margin of the Qinghai-Tibetan plateau,the mainstream flows along the NW-SE trending Xianshuihe fault zone,then turns NS and flows to the south along the Anninghe and Xiaojiang faults. There is another crustal flow in the north of the study area,flowing in the NE and E-W directions to the Longmenshan faults.
文摘In this study,the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented.In the study reported herein,the fractal dimension of velocity fluctuations(u′,v′,w′) and the Reynolds shear stresses(u′v′ and u′w′) of flow around a bridge pier were computed using a Fractal Interpolation Function(FIF) algorithm.The velocity fluctuations of flow along a horizontal plane above the bed were measured using Acoustic Doppler Velocity meter(ADV)and Particle Image Velocimetry(P1V).The PIV is a powerful technique which enables us to attain high resolution spatial and temporal information of turbulent flow using instantaneous time snapshots.In this study,PIV was used for detection of high resolution fractal scaling around a bridge pier.The results showed that the fractal dimension of flow fluctuated significantly in the longitudinal and transverse directions in the vicinity of the pier.It was also found that the fractal dimension of velocity fluctuations and shear stresses increased rapidly at vicinity of pier at downstream whereas it remained approximately unchanged far downstream of the pier.The higher value of fractal dimension was found at a distance equal to one times of the pier diameter in the back of the pier.Furthermore,the average fractal dimension for the streamwise and transverse velocity fluctuations decreased from the centreline to the side wall of the flume.Finally,the results from ADV measurement were consistent with the result from PIV,therefore,the ADV enables to detect turbulent characteristics of flow around a circular bridge pier.
文摘In this paper, problems of the flow over a fat plate in the large Reynolds numbercase are studied by using the method of multiple scales ̄[1,2].We have obtained N-orderuniformly valid asymptotic solutions of the Naver-Stodes equations.
基金supported by a Grant-in Aid for Scientific Research on Priority Areas(grant no.17051016 to K.I.and F.S.)for Young Scientists(B)(grant no.18770032to K.I.)
文摘Oxygen-evolving complex (OEC) protein is the original name for membrane-peripheral subunits of photosystem (PS) II. Recently, multiple isoforms and homologs for OEC proteins have been iden- tified in the chloroplast thylakoid lumen, indicating that functional diversification has occurred in the OEC family. Gene expression profiles suggest that the Arabidopsis OEC proteins are roughly categorized into three groups: the authentic OEC group, the stressresponsive group, and the group including proteins related to the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in cyclic electron transport around PSI. Based on the above gene expression profiles, molecular functions of the OEC family proteins are discussed together with our current knowledge about their functions.
基金the EU for financial support through the Framework 6 Marie Curie Action "NEWGROWTH", contract number MEST-CT-2005-020724Johnson Matthey Plc and Birmingham Science City for funding and supporting this research
文摘In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test.
文摘The flow past a circular cylinder and airfoil with varying mathematical roughness function are numerically simulated. A new model about blowing and suction is constructed by using the concept of mathematical roughness function. The flow field and the drag are investigated through this new model. By the numerical study about bluff body, some conclusions are drawn to reduce the drag.
文摘The competition among carmakers to introduce the most innovative solutions is growing day by day. Since few years, simulation is being used widely in automotive industries. Instead of building costly prototypes and expending fuel for doing tests on a real engine, simulation became a good solution before taking new decisions. Concerning the study of gas dynamics and pressure wave's propagation in the intake system of an internal combustion engine, a precise modelling is needed in order to obtain good results. Unfortunately, the computational time for these simulations is considered as high compared to the real time. The main objective of the new approach presented in this paper, is to reduce simulation time of models in the internal combustion engine simulation code, allowing them to accomplish many engine simulations faster than one-dimensional non-linear approach. A transfer function is defined to link directly the relative pressure and the air mass flow rate. In a second time, the model is included into an internal combustion engine simulation code. The results obtained with this code are compared to experimental ones which are measured on a one-cylinder engine test bench. A good agreement is obtained between the experimental results and the numerical one. The model was improved by adding a transfer function for temperature evolution. The convergence time is then reduced as well as the global simulation time of the model.
文摘The author compared in this study the effects of the treatment with integrated traditional andwestern medicine with that of routine western medicine alone on the recovery of patients with acute hyperten-sive cerebral hemorrhage. The results of the treatments showed that integrated traditional Chinese and west-ern medicine had better effect on speeding up the absorption of intracranial hematoma, elimination of en-cephaledema and restoration of neural functions than routine western medicine. There is significant differencebetween the results of the two kinds of treatment (P< 0. 05 ̄0. 01 ) , which suggested that treating patientsearly with traditional Chinese medicine greatly helps the recovery of patients with cerebral hemorrhage.