It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions...It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions (steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper, the instantaneous objective function is closed to be the instantaneous selectivity and several samples are examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space.展开更多
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T...Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.展开更多
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult...In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.展开更多
The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functio...The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functions for the vibration design of a pipeline or pipe system are introduced,namely,the frequency,amplitude,transfer ratio,curvature and deformation energy as options for the optimization process.The genetic algorithms(GA)are adopted as the opti- mization method,in which the selection of the adaptive genetic operators and the method of implementation of the GA process are crucial.The optimization procedure for all the above ob- jective functions is carried out using GA on the basis of finite element software-MSC/NASTRAN. The optimal solutions of these functions and the stress distribution on the structure are calculated and compared through an example,and their characteristics are analyzed.Finally we put forward two new objective functions,curvature and deformation energy for pipe system optimization.The calculations show that using the curvature as the objective function can reflect the case of minimal stress,and the optimization results using the deformation energy represent lesser and more uni- form stress distribution.The calculation results and process showed that the genetic algorithms can effectively implement damping design of engine pipelines and satisfy the efficient engineering design requirement.展开更多
A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the sys...A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non linear systems and obviously improve modeling accuracy.展开更多
High performance of parallel computing on a message-passing multicomputer System relies on the balance of the workloads located on the processing elements of the System and the minimum communication ovcrheads among th...High performance of parallel computing on a message-passing multicomputer System relies on the balance of the workloads located on the processing elements of the System and the minimum communication ovcrheads among them. Mapping is the technology to partition the problem domain wellbalanced into multiple distinct execution tasks based on some measures. In mapping, a good objective function is the criterion to guarantce the distinct execution tasks equitable. In this paper, we evaluate five categories of those existed objective functions with three different problem subjects using experiments and find an objective function is much suitable for all kinds of problems.展开更多
The traditional linear programming model is deterministic. The way that uncertainty is handled is to compute the range of optimality. After the optimal solution is obtained, typically by the simplex method, one consid...The traditional linear programming model is deterministic. The way that uncertainty is handled is to compute the range of optimality. After the optimal solution is obtained, typically by the simplex method, one considers the effect of varying each objective function coefficient, one at a time. This yields the range of optimality within which the decision variables remain constant. This sensitivity analysis is useful for helping the analyst get a sense for the problem. However, it is unrealistic because objective function coefficients tend not to stand still. They are typically profit contributions from products sold and are subject to randomly varying selling prices. In this paper, a realistic linear program is created for simultaneously randomizing the coefficients from any probability distribution. Furthermore, we present a novel approach for designing a copula of random objective function coefficients according to a specified rank correlation. The corresponding distribution of objective function values is created. This distribution is examined directly for central tendency, spread, skewness and extreme values for the purpose of risk analysis. This enables risk analysis and business analytics, emerging topics in education and preparation for the knowledge economy.展开更多
The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spec...The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.展开更多
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the o...With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the optimal configuration of improving economy of the system,and then identifying the important nodes.In this strategy,the objectives increase the node importance degree and decrease the active power loss subjected to operational constraints.A compound objective function with weight coefficients is formulated to balance the conflict of the objectives.Then a novel quantum particle swarm optimization based on loop switches hierarchical encoded was employed to address the compound objective reconfiguration problem.Its main contribution is the presentation of the hierarchical encoded scheme which is used to generate the population swarm particles of representing only radial connected solutions.Because the candidate solutions are feasible,the search efficiency would improve dramatically during the optimization process without tedious topology verification.To validate the proposed strategy,simulations are carried out on the test systems.The results are compared with other techniques in order to evaluate the performance of the proposed method.展开更多
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be...Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.展开更多
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro...The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.展开更多
Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operat...Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.展开更多
Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos...Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.展开更多
Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave...Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave equations,it has been recognized as one of the key methods for seismic data imaging and Earth model building in the fields of global/regional and exploration seismology.Unfortunately,conventional FWI fixes background velocity mainly relying on refraction and turning waves that are commonly rich in large offsets.By contrast,reflections in the short offsets mainly contribute to the reconstruction of the high-resolution interfaces.Restricted by acquisition geometries,refractions and turning waves in the record usually have limited penetration depth,which may not reach oil/gas reservoirs.Thus,reflections in the record are the only source that carries the information of these reservoirs.Consequently,it is meaningful to develop reflection-waveform inversion(RWI)that utilizes reflections to recover background velocity including the deep part of the model.This review paper includes:analyzing the weaknesses of FWI when inverting reflections;overviewing the principles of RWI,including separation of the tomography and migration components,the objective functions,constraints;summarizing the current status of the technique of RWI;outlooking the future of RWI.展开更多
The kinematic redundancy in a robot leads to an infinite number of solutions for inverse kinematics, which implies the possibility to select a 'best' solution according to an optimization criterion. In this pa...The kinematic redundancy in a robot leads to an infinite number of solutions for inverse kinematics, which implies the possibility to select a 'best' solution according to an optimization criterion. In this paper, two optimization objective functions are proposed, aiming at either minimizing extra degrees of freedom (DOFs) or minimizing the total potential energy of a multilink redundant robot. Physical constraints of either equality or inequality types are taken into consideration in the objective functions. Since the closed-form solutions do not exist in general for highly nonlinear and constrained optimization problems, we adopt and develop two numerical methods, which are verified to be effective and precise in solving the two optimization problems associated with the redundant inverse kinematics. We first verify that the well established trajectory following method can precisely solve the two optimization problems, but is computation intensive. To reduce the computation time, a sequential approach that combines the sequential quadratic programming and iterative Newton-Raphson algorithm is developed. A 4-DOF Fujitsu Hoap-1 humanoid robot arm is used as a prototype to validate the effectiveness of the proposed optimization solutions.展开更多
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
the routing protocol for low-power and lossy networks(RPL) has been used in advanced metering infrastructure(AMI)which could provide two-way communication between smart meters and city utilities.To improve the network...the routing protocol for low-power and lossy networks(RPL) has been used in advanced metering infrastructure(AMI)which could provide two-way communication between smart meters and city utilities.To improve the network performance of AMI networks, this paper proposed an improved algorithm of RPL based on triangle module operator(IAR-TMO). IAR-TMO proposes membership functions of the following five typical routing metrics: end-to-end delay, number of hops, expected transmission count(ETX),node remaining energy, and child node count.Moreover, IAR-TMO uses triangle module operator to fuse membership functions of these routing metrics. Then, IAR-TMO selects preferred parents(the next hop) based on the triangle module operator. Theoretical analysis and simulation results show that IAR-TMO has a great improvement when compared with two recent representative algorithms: ETXOF(ETX Objective Function) and OF-FL(Objective Function based on Fuzzy Logic), in terms of network lifetime, average end-to-end delay,etc. Consequently, the network performances of AMI networks can be improved effectively.展开更多
Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algo...Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algorithms are one of the efficient and effective methods in providing quasioptimal solutions for these type of problems.In this study,a new algorithm called the Mutated Leader Algorithm(MLA)is presented.The main idea in the proposed MLA is to update the members of the algorithm population in the search space based on the guidance of a mutated leader.In addition to information about the best member of the population,themutated leader also contains information about the worst member of the population,as well as other normal members of the population.The proposed MLA is mathematically modeled for implementation on optimization problems.A standard set consisting of twenty-three objective functions of different types of unimodal,fixed-dimensional multimodal,and high-dimensional multimodal is used to evaluate the ability of the proposed algorithm in optimization.Also,the results obtained from theMLA are compared with eight well-known algorithms.The results of optimization of objective functions show that the proposed MLA has a high ability to solve various optimization problems.Also,the analysis and comparison of the performance of the proposed MLA against the eight compared algorithms indicates the superiority of the proposed algorithm and ability to provide more suitable quasi-optimal solutions.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29776028, No. 29836140).
文摘It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions (steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper, the instantaneous objective function is closed to be the instantaneous selectivity and several samples are examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space.
基金supported partly by the National Science and Technology Major Project of China(Grant No.2016ZX05025-001006)Major Science and Technology Project of CNPC(Grant No.ZD2019-183-007)
文摘Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.
文摘In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
基金Project supported by Shenyang Aviation Engine Institute of Aviation Industrial Group(No.2483-9704).
文摘The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functions for the vibration design of a pipeline or pipe system are introduced,namely,the frequency,amplitude,transfer ratio,curvature and deformation energy as options for the optimization process.The genetic algorithms(GA)are adopted as the opti- mization method,in which the selection of the adaptive genetic operators and the method of implementation of the GA process are crucial.The optimization procedure for all the above ob- jective functions is carried out using GA on the basis of finite element software-MSC/NASTRAN. The optimal solutions of these functions and the stress distribution on the structure are calculated and compared through an example,and their characteristics are analyzed.Finally we put forward two new objective functions,curvature and deformation energy for pipe system optimization.The calculations show that using the curvature as the objective function can reflect the case of minimal stress,and the optimization results using the deformation energy represent lesser and more uni- form stress distribution.The calculation results and process showed that the genetic algorithms can effectively implement damping design of engine pipelines and satisfy the efficient engineering design requirement.
文摘A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non linear systems and obviously improve modeling accuracy.
文摘High performance of parallel computing on a message-passing multicomputer System relies on the balance of the workloads located on the processing elements of the System and the minimum communication ovcrheads among them. Mapping is the technology to partition the problem domain wellbalanced into multiple distinct execution tasks based on some measures. In mapping, a good objective function is the criterion to guarantce the distinct execution tasks equitable. In this paper, we evaluate five categories of those existed objective functions with three different problem subjects using experiments and find an objective function is much suitable for all kinds of problems.
文摘The traditional linear programming model is deterministic. The way that uncertainty is handled is to compute the range of optimality. After the optimal solution is obtained, typically by the simplex method, one considers the effect of varying each objective function coefficient, one at a time. This yields the range of optimality within which the decision variables remain constant. This sensitivity analysis is useful for helping the analyst get a sense for the problem. However, it is unrealistic because objective function coefficients tend not to stand still. They are typically profit contributions from products sold and are subject to randomly varying selling prices. In this paper, a realistic linear program is created for simultaneously randomizing the coefficients from any probability distribution. Furthermore, we present a novel approach for designing a copula of random objective function coefficients according to a specified rank correlation. The corresponding distribution of objective function values is created. This distribution is examined directly for central tendency, spread, skewness and extreme values for the purpose of risk analysis. This enables risk analysis and business analytics, emerging topics in education and preparation for the knowledge economy.
基金financial support from Teesside University to support the Ph.D. program of the first author.
文摘The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
基金Project(61102039)supported by the National Natural Science Foundation of ChinaProject(2014AA052600)supported by National Hi-tech Research and Development Plan,China
文摘With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the optimal configuration of improving economy of the system,and then identifying the important nodes.In this strategy,the objectives increase the node importance degree and decrease the active power loss subjected to operational constraints.A compound objective function with weight coefficients is formulated to balance the conflict of the objectives.Then a novel quantum particle swarm optimization based on loop switches hierarchical encoded was employed to address the compound objective reconfiguration problem.Its main contribution is the presentation of the hierarchical encoded scheme which is used to generate the population swarm particles of representing only radial connected solutions.Because the candidate solutions are feasible,the search efficiency would improve dramatically during the optimization process without tedious topology verification.To validate the proposed strategy,simulations are carried out on the test systems.The results are compared with other techniques in order to evaluate the performance of the proposed method.
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
基金Project supported by the National Natural Science Foundation of China (Gant No.11872323)。
文摘Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.
基金This research was supported by Science and Technology Research Project of Education Department of Jiangxi Province,China(Nos.GJJ2206701,GJJ2206717).
文摘The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.
基金supported by the National Natural Science Foundation of China(Grant.No.31901400)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant.No.2023YW09).
文摘Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.
基金Key R&D Program of Xizang Autonomous Region(XZ202101ZY0004G)National Natural Science Foundation of China(U2142202)+1 种基金National Key R&D Program of China(2022YFC3004104)Key Innovation Team of China Meteor-ological Administration(CMA2022ZD07)。
文摘Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.
基金supported by National Key R&D Program of China(No.2018YFA0702502)NSFC(Grant No.41974142)Science Foundation of China University of petroleum,Beijing(No.2462019YJRC005).
文摘Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave equations,it has been recognized as one of the key methods for seismic data imaging and Earth model building in the fields of global/regional and exploration seismology.Unfortunately,conventional FWI fixes background velocity mainly relying on refraction and turning waves that are commonly rich in large offsets.By contrast,reflections in the short offsets mainly contribute to the reconstruction of the high-resolution interfaces.Restricted by acquisition geometries,refractions and turning waves in the record usually have limited penetration depth,which may not reach oil/gas reservoirs.Thus,reflections in the record are the only source that carries the information of these reservoirs.Consequently,it is meaningful to develop reflection-waveform inversion(RWI)that utilizes reflections to recover background velocity including the deep part of the model.This review paper includes:analyzing the weaknesses of FWI when inverting reflections;overviewing the principles of RWI,including separation of the tomography and migration components,the objective functions,constraints;summarizing the current status of the technique of RWI;outlooking the future of RWI.
文摘The kinematic redundancy in a robot leads to an infinite number of solutions for inverse kinematics, which implies the possibility to select a 'best' solution according to an optimization criterion. In this paper, two optimization objective functions are proposed, aiming at either minimizing extra degrees of freedom (DOFs) or minimizing the total potential energy of a multilink redundant robot. Physical constraints of either equality or inequality types are taken into consideration in the objective functions. Since the closed-form solutions do not exist in general for highly nonlinear and constrained optimization problems, we adopt and develop two numerical methods, which are verified to be effective and precise in solving the two optimization problems associated with the redundant inverse kinematics. We first verify that the well established trajectory following method can precisely solve the two optimization problems, but is computation intensive. To reduce the computation time, a sequential approach that combines the sequential quadratic programming and iterative Newton-Raphson algorithm is developed. A 4-DOF Fujitsu Hoap-1 humanoid robot arm is used as a prototype to validate the effectiveness of the proposed optimization solutions.
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
基金supported by the Beijing Laboratory of Advanced Information Networks
文摘the routing protocol for low-power and lossy networks(RPL) has been used in advanced metering infrastructure(AMI)which could provide two-way communication between smart meters and city utilities.To improve the network performance of AMI networks, this paper proposed an improved algorithm of RPL based on triangle module operator(IAR-TMO). IAR-TMO proposes membership functions of the following five typical routing metrics: end-to-end delay, number of hops, expected transmission count(ETX),node remaining energy, and child node count.Moreover, IAR-TMO uses triangle module operator to fuse membership functions of these routing metrics. Then, IAR-TMO selects preferred parents(the next hop) based on the triangle module operator. Theoretical analysis and simulation results show that IAR-TMO has a great improvement when compared with two recent representative algorithms: ETXOF(ETX Objective Function) and OF-FL(Objective Function based on Fuzzy Logic), in terms of network lifetime, average end-to-end delay,etc. Consequently, the network performances of AMI networks can be improved effectively.
基金PT(corresponding author)was supported by the Excellence project PrF UHK No.2202/2020-2022 and Long-term development plan of UHK for year 2021,University of Hradec Králové,Czech Republic,https://www.uhk.cz/en/faculty-of-science/about-faculty/offic ial-board/internal-regulations-and-governing-acts/governing-acts/deans-decision/2020#grant-competi tion-of-fos-uhk-excellence-for-2020.
文摘Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algorithms are one of the efficient and effective methods in providing quasioptimal solutions for these type of problems.In this study,a new algorithm called the Mutated Leader Algorithm(MLA)is presented.The main idea in the proposed MLA is to update the members of the algorithm population in the search space based on the guidance of a mutated leader.In addition to information about the best member of the population,themutated leader also contains information about the worst member of the population,as well as other normal members of the population.The proposed MLA is mathematically modeled for implementation on optimization problems.A standard set consisting of twenty-three objective functions of different types of unimodal,fixed-dimensional multimodal,and high-dimensional multimodal is used to evaluate the ability of the proposed algorithm in optimization.Also,the results obtained from theMLA are compared with eight well-known algorithms.The results of optimization of objective functions show that the proposed MLA has a high ability to solve various optimization problems.Also,the analysis and comparison of the performance of the proposed MLA against the eight compared algorithms indicates the superiority of the proposed algorithm and ability to provide more suitable quasi-optimal solutions.