Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat...Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.展开更多
The mixing of powders is a highly relevant field under additive manufacturing,however,it has attracted limited interest to date.The in-situ mixing of various powders remains a significant challenge.This paper proposes...The mixing of powders is a highly relevant field under additive manufacturing,however,it has attracted limited interest to date.The in-situ mixing of various powders remains a significant challenge.This paper proposes a new method utilizing a static mixer for the in-situ mixing of multiple powders through the laser-based directed energy deposition(DED)of functionally graded materials.Firstly,a powder-mixing experimental platform was established;WC and 316L powders were selected for the mixing experiments.Secondly,scanning electron microscopy,energy dispersive spectroscopy,and image processing were used to visually evaluate the homogeneity and proportion of the in-situ mixed powder.Furthermore,powder-mixing simulations were conducted to determine the powder-mixing mechanism.In the simulations,a powder carrier gas flow field and particle mixing were employed.Finally,a WC/316L metal matrix composite sample was produced using laser-based DED to verify the application potential of the static mixer.It was found that the static mixer could adjust the powder ratio online,and a response time of 1–2 s should be considered when adjusting the ratio of the mixed powder.A feasible approach for in-situ powder mixing for laser-based DED was demonstrated and investigated,creating the basis for functionally graded materials.展开更多
Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by...Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.展开更多
Critical and rare earth elements are in high demand for their increasing incorporation in modern technological devices for applications in the military, industrial, commercial, and consumer sectors. Round Top Mountain...Critical and rare earth elements are in high demand for their increasing incorporation in modern technological devices for applications in the military, industrial, commercial, and consumer sectors. Round Top Mountain, a rhyolite laccolith in Sierra Blanca, west Texas, U.S.A. is a unique mineral deposit that offers opportunity for development of rare earth elements, especially the heavy rare earths, as well as associated critical elements. The main objective here is to evaluate the distances between accessory minerals of potential economic value (yttrofluorite, cryolite, uraninite, thorite, cassiterite, and columbite), and to major (potassium feldspar, albite, and quartz) and minor minerals (annite mi-ca, magnetite, and zircon). In this study we explore the proximity and clustering of these minor and accessory minerals, at the mi-cron-to-millimeter scale, from mineral maps constructed in a previous application of ArcGISTM tools to electron probe microanal-ysis (EPMA) element maps. Our goal is to determine whether specific minerals cluster spatially and, if so, at what distances. We noted that the high-value target yttrofluorite grains often neighbor potassium feldspar and quartz grains, but less commonly magnetite and mica grains. With regard to cluster analysis, most minor and accessory minerals were found to group together at small scales (low micrometer) and were dis-persed or random at larger (up to 1 mm) distances.展开更多
为进一步提升分布式能源的调节潜力,基于信息差距决策理论,将探讨虚拟电厂(virtual power plant,VPP)在参与需求响应(demand response,DR)策略时的竞价方式分为平衡型、保守型和进取型3种策略模型,并为每种策略设计鲁棒函数和机会函数,...为进一步提升分布式能源的调节潜力,基于信息差距决策理论,将探讨虚拟电厂(virtual power plant,VPP)在参与需求响应(demand response,DR)策略时的竞价方式分为平衡型、保守型和进取型3种策略模型,并为每种策略设计鲁棒函数和机会函数,分别实现对不同类型决策的优化。同时,设置ε约束模型,考虑了碳排放和利润的权衡关系。采用IEEE 18节点系统作为仿真环境,验证了所提方法的优点和必要性。仿真结果表明,保守型VPP能够保证在未来价格落入最大鲁棒性区间时获得最小关键利润;进取型VPP能够从意外的价格波动中获益,并实现期望的利润。展开更多
Recently,graphene has drawn considerable attention in the field of electronics,owing to its favorable conductivity and high carrier mobility.Crucial to the industrialization of graphene is its high-quality microfabric...Recently,graphene has drawn considerable attention in the field of electronics,owing to its favorable conductivity and high carrier mobility.Crucial to the industrialization of graphene is its high-quality microfabrication via chemical vapor deposition.However,many problems remain in its preparation,such as the not fully understood cracking mechanism of the carbon source,the mechanism of its substrate oxidation,and insufficient defect repair theory.To help close this capability gap,this study leverages density functional theory to explore the role of O in graphene growth.The effects of Cu substrate oxidation on carbon source cracking,nucleation barriers,crystal nucleus growth,and defect repairs are discussed.OCu was found to reduce energy change during dehydrogenation,rendering the process easier.Moreover,the adsorbed O in graphene or its Cu substrate can promote defect repair and edge growth.展开更多
Recently,the preparation of ultra-high temperature HfC ceramic coating has gained significant attention,particularly through the application of the HfCl_(4)-CH_(4)-H_(2)-Ar system via Chemical Vapor Deposition(CVD),wh...Recently,the preparation of ultra-high temperature HfC ceramic coating has gained significant attention,particularly through the application of the HfCl_(4)-CH_(4)-H_(2)-Ar system via Chemical Vapor Deposition(CVD),which has been found widely applied to C/C composites.Herein,an analysis of the reactions that occur in the initial stage of the CVD-HfC coating process is presented using Density Functional Theory(DFT)and Transition State Theory(TST)at the B3LYP/Lanl2DZ level.The results reveal that HfCl4 can only cleave to produce hypochlorite,which will further react with methyl to synthesize intermediates to form HfC.According to the analysis of the energy barrier and reaction constant,HfCl preferentially reacts with methyl groups to form complex adsorptive intermediates at 1573 K.With a C—Hf bond production energy of 212.8 kcal/mol(1 kcal=4.18 kJ),the reaction rate constant of HfCl+CH is calculated to be 2.15×10^(-18) cm^(3)/s at 1573 K.Additionally,both the simulation and experimental results exhibit that the upward trend of reaction rate constants with temperature is also consistent with the deposition rate,indicating that the growth curve of the reaction rate constants tends to flatten out.The proposed reaction model of the precursor’s decomposition and reconstruction during deposition process has significant implication for the process guidance.展开更多
Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,under...Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,understanding how simulated N deposition affects the rate and direction of soil N transformation is critically important in predicting responses of plantation productivity in the context of N loading. This study reports the effects of N addition rate(0, 40, and 120 kg N ha^(-1) a^(-1)) and form(NH_4Cl vs. NaNO_3) on net N mineralization and nitrification estimated by in situ soil core incubation and on-soil microbial biomass determined by the phospholipid fatty acid(PLFA) method in a subtropical pine plantation. N additions had no influences on net N mineralization throughout the year. Net nitrification rate was significantly reduced by additions of both NH_4Cl(71.5) and NaNO_3(47.1%) during the active growing season, with the stronger inhibitory effect at high N rates. Soil pH was markedly decreased by 0.16 units by NH_4Cl additions. N inputs significantly decreased the ratio of fungal-to-bacterial PLFAs on average by 0.28(49.1%) in November. Under NH_4Cl additions, nitrification was positively related with fungal biomass and soil pH. Under NaNO_3 additions,nitrification was positively related with all microbial groups except for bacterial biomass. We conclude that simulated N deposition inhibited net nitrification in the acidic soils of a subtropical plantation forest in China,primarily due to accelerated soil acidification and compositional shifts in microbial functional groups. These findings may facilitate a better mechanistic understanding of soil N cycling in the context of N loading.展开更多
Objective: Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) have been implicated in protection against myocardial ischemia injury. This study was designed to explore a new method of therapy for myoc...Objective: Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) have been implicated in protection against myocardial ischemia injury. This study was designed to explore a new method of therapy for myocardial injury by eNOS gene transfection. Methods: A rat model of myocardial infarction (MI) was established by left anterior descending (LAD) coronary artery ligation, eNOS gene in an adenovirus vector was delivered locally into the rat heart and hemodynamic parameters were examined after 3 weeks, Matrix metalloproteinase-2 and 9 (MMP-2, MMP-9) mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR), and the protein levels of eNOS, caspase-3, and transforming grouth factor 131 (TGF-131) were determined by western blot assay. Results: eNOS gene transfer significantly reduced cardiomyocyte apoptosis and improved cardiac function. In addition, eNOS significantly reduced the mRNA levels of MMP-2 and MMP-9. In the eNOS gene transfected group, the activation of caspase-3 and TGF-β1 were decreased. However, the protection was reversed by administration of the NOS inhibitor, N(o))-nitro-l-arginine methyl ester (L-NAME). Conclusion: These results demonstrate that the eNOS provides cardiac protection after myocardial infarction injury through inhibition of cardiac apoptosis and collagen deposition, and suppression of TGF-β1.展开更多
The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer...The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.展开更多
Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water...Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water strategy effect.Then,the effect of water on the morphology,topology,structure,optical properties and surface composition of the obtained films has been comprehensively investigated.The results reveal that a pure phase of Cu2O was obtained.The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV.This finding was mainly related to the decrease of crystallite size due to the effect of water.The topology analyses,by using atomic force microscope,also revealed that surface roughness decreases with water addition,namely more uniform covered surface.Moreover,theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface.Formation mechanism of the Cu2O thin film was also suggested and discussed.展开更多
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.
基金the financial support of the Hunan Innovation Platform and Talent Plan(2022RC3033)Natural Science Foundation of Shandong Province(ZR2020ZD04)Ganzhou Science and Technology Planning Project(Grant No.Ganshikefa[2019]60)。
文摘Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.
基金supported by Jiangsu Industry-University-Research Institute Cooperation Project(Grant No.BY2021078).
文摘The mixing of powders is a highly relevant field under additive manufacturing,however,it has attracted limited interest to date.The in-situ mixing of various powders remains a significant challenge.This paper proposes a new method utilizing a static mixer for the in-situ mixing of multiple powders through the laser-based directed energy deposition(DED)of functionally graded materials.Firstly,a powder-mixing experimental platform was established;WC and 316L powders were selected for the mixing experiments.Secondly,scanning electron microscopy,energy dispersive spectroscopy,and image processing were used to visually evaluate the homogeneity and proportion of the in-situ mixed powder.Furthermore,powder-mixing simulations were conducted to determine the powder-mixing mechanism.In the simulations,a powder carrier gas flow field and particle mixing were employed.Finally,a WC/316L metal matrix composite sample was produced using laser-based DED to verify the application potential of the static mixer.It was found that the static mixer could adjust the powder ratio online,and a response time of 1–2 s should be considered when adjusting the ratio of the mixed powder.A feasible approach for in-situ powder mixing for laser-based DED was demonstrated and investigated,creating the basis for functionally graded materials.
基金supported by the Basque Government(Eusko Jaurlaritza)(Nos.KK-2022/00080 Minaku,KK-2022/00070 Edison)tthe Spanish Ministry of Science and Innovation(Nos.PID2019-109220RB-I00 Alasurf,PDC2021-121042-I00 EHU-Coax)the Basque Government(Eusko Jaurlaritza)in call IT 1573-22 for the financial support of the research group.
文摘Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.
文摘Critical and rare earth elements are in high demand for their increasing incorporation in modern technological devices for applications in the military, industrial, commercial, and consumer sectors. Round Top Mountain, a rhyolite laccolith in Sierra Blanca, west Texas, U.S.A. is a unique mineral deposit that offers opportunity for development of rare earth elements, especially the heavy rare earths, as well as associated critical elements. The main objective here is to evaluate the distances between accessory minerals of potential economic value (yttrofluorite, cryolite, uraninite, thorite, cassiterite, and columbite), and to major (potassium feldspar, albite, and quartz) and minor minerals (annite mi-ca, magnetite, and zircon). In this study we explore the proximity and clustering of these minor and accessory minerals, at the mi-cron-to-millimeter scale, from mineral maps constructed in a previous application of ArcGISTM tools to electron probe microanal-ysis (EPMA) element maps. Our goal is to determine whether specific minerals cluster spatially and, if so, at what distances. We noted that the high-value target yttrofluorite grains often neighbor potassium feldspar and quartz grains, but less commonly magnetite and mica grains. With regard to cluster analysis, most minor and accessory minerals were found to group together at small scales (low micrometer) and were dis-persed or random at larger (up to 1 mm) distances.
文摘为进一步提升分布式能源的调节潜力,基于信息差距决策理论,将探讨虚拟电厂(virtual power plant,VPP)在参与需求响应(demand response,DR)策略时的竞价方式分为平衡型、保守型和进取型3种策略模型,并为每种策略设计鲁棒函数和机会函数,分别实现对不同类型决策的优化。同时,设置ε约束模型,考虑了碳排放和利润的权衡关系。采用IEEE 18节点系统作为仿真环境,验证了所提方法的优点和必要性。仿真结果表明,保守型VPP能够保证在未来价格落入最大鲁棒性区间时获得最小关键利润;进取型VPP能够从意外的价格波动中获益,并实现期望的利润。
基金the National Natural Science Foundation of China(Nos.T2188101,52021006,and 52072042)the National Natural Science Foundation Youth Fund(Nos.22105006 and 52202033)+2 种基金Beijing National Laboratory for Molecular Science(No.BNLMS-CXTD-202001)the National Key R&D Program of China(Nos.2016YFA0200101,2016YFA0200103,and 2018YFA0703502)the Beijing Municipal Science&Technology Commission(Nos.Z191100000819005,Z191100000819007,and Z201100008720005).
文摘Recently,graphene has drawn considerable attention in the field of electronics,owing to its favorable conductivity and high carrier mobility.Crucial to the industrialization of graphene is its high-quality microfabrication via chemical vapor deposition.However,many problems remain in its preparation,such as the not fully understood cracking mechanism of the carbon source,the mechanism of its substrate oxidation,and insufficient defect repair theory.To help close this capability gap,this study leverages density functional theory to explore the role of O in graphene growth.The effects of Cu substrate oxidation on carbon source cracking,nucleation barriers,crystal nucleus growth,and defect repairs are discussed.OCu was found to reduce energy change during dehydrogenation,rendering the process easier.Moreover,the adsorbed O in graphene or its Cu substrate can promote defect repair and edge growth.
基金financially supported by the National Natural Science Foundation of China (Nos. 52293373 and 52130205)the National Key Research and Development Program of China (No. 2021YFA0715803)ND Basic Research Funds of Northwestern Polytechnical University, China (No. G2022WD)
文摘Recently,the preparation of ultra-high temperature HfC ceramic coating has gained significant attention,particularly through the application of the HfCl_(4)-CH_(4)-H_(2)-Ar system via Chemical Vapor Deposition(CVD),which has been found widely applied to C/C composites.Herein,an analysis of the reactions that occur in the initial stage of the CVD-HfC coating process is presented using Density Functional Theory(DFT)and Transition State Theory(TST)at the B3LYP/Lanl2DZ level.The results reveal that HfCl4 can only cleave to produce hypochlorite,which will further react with methyl to synthesize intermediates to form HfC.According to the analysis of the energy barrier and reaction constant,HfCl preferentially reacts with methyl groups to form complex adsorptive intermediates at 1573 K.With a C—Hf bond production energy of 212.8 kcal/mol(1 kcal=4.18 kJ),the reaction rate constant of HfCl+CH is calculated to be 2.15×10^(-18) cm^(3)/s at 1573 K.Additionally,both the simulation and experimental results exhibit that the upward trend of reaction rate constants with temperature is also consistent with the deposition rate,indicating that the growth curve of the reaction rate constants tends to flatten out.The proposed reaction model of the precursor’s decomposition and reconstruction during deposition process has significant implication for the process guidance.
基金financially supported by the Grants from the National Key Research and Development Plan(No.2016YFD06000202)the National Natural Science Foundation of China(Nos.31570443,31130009)
文摘Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,understanding how simulated N deposition affects the rate and direction of soil N transformation is critically important in predicting responses of plantation productivity in the context of N loading. This study reports the effects of N addition rate(0, 40, and 120 kg N ha^(-1) a^(-1)) and form(NH_4Cl vs. NaNO_3) on net N mineralization and nitrification estimated by in situ soil core incubation and on-soil microbial biomass determined by the phospholipid fatty acid(PLFA) method in a subtropical pine plantation. N additions had no influences on net N mineralization throughout the year. Net nitrification rate was significantly reduced by additions of both NH_4Cl(71.5) and NaNO_3(47.1%) during the active growing season, with the stronger inhibitory effect at high N rates. Soil pH was markedly decreased by 0.16 units by NH_4Cl additions. N inputs significantly decreased the ratio of fungal-to-bacterial PLFAs on average by 0.28(49.1%) in November. Under NH_4Cl additions, nitrification was positively related with fungal biomass and soil pH. Under NaNO_3 additions,nitrification was positively related with all microbial groups except for bacterial biomass. We conclude that simulated N deposition inhibited net nitrification in the acidic soils of a subtropical plantation forest in China,primarily due to accelerated soil acidification and compositional shifts in microbial functional groups. These findings may facilitate a better mechanistic understanding of soil N cycling in the context of N loading.
文摘Objective: Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) have been implicated in protection against myocardial ischemia injury. This study was designed to explore a new method of therapy for myocardial injury by eNOS gene transfection. Methods: A rat model of myocardial infarction (MI) was established by left anterior descending (LAD) coronary artery ligation, eNOS gene in an adenovirus vector was delivered locally into the rat heart and hemodynamic parameters were examined after 3 weeks, Matrix metalloproteinase-2 and 9 (MMP-2, MMP-9) mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR), and the protein levels of eNOS, caspase-3, and transforming grouth factor 131 (TGF-131) were determined by western blot assay. Results: eNOS gene transfer significantly reduced cardiomyocyte apoptosis and improved cardiac function. In addition, eNOS significantly reduced the mRNA levels of MMP-2 and MMP-9. In the eNOS gene transfected group, the activation of caspase-3 and TGF-β1 were decreased. However, the protection was reversed by administration of the NOS inhibitor, N(o))-nitro-l-arginine methyl ester (L-NAME). Conclusion: These results demonstrate that the eNOS provides cardiac protection after myocardial infarction injury through inhibition of cardiac apoptosis and collagen deposition, and suppression of TGF-β1.
基金supported by the National Nature Science Foundation of China,No.81870819(to YPC)the Natural Science Foundation of Liaoning Province of China,No.2019-MS-200(to XNX).
文摘The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.
基金supported by the Ministry of Science and Technology of China(No.2017YFA0402800)the National Natural Science and Technology of China(No.91541102 and No.51476168)+2 种基金the support by Chinese Academy of Sciences for Senior International Scientists within President’s International Fellowship Initiative(PIFI)programthe financial support during his Ph.D.research stay at Bielefeld UniversityThe Moroccan institute of IRESEN is acknowledged for the financial support(Innowind13 Nanolubricant)
文摘Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water strategy effect.Then,the effect of water on the morphology,topology,structure,optical properties and surface composition of the obtained films has been comprehensively investigated.The results reveal that a pure phase of Cu2O was obtained.The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV.This finding was mainly related to the decrease of crystallite size due to the effect of water.The topology analyses,by using atomic force microscope,also revealed that surface roughness decreases with water addition,namely more uniform covered surface.Moreover,theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface.Formation mechanism of the Cu2O thin film was also suggested and discussed.