A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several inter...A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.展开更多
This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we...This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.展开更多
文摘A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.
基金This research was fully supported by Universiti Teknologi PETRONAS(UTP)and Ministry of Education,Malaysia through research grant FRGS/1/2018/STG06/UTP/03/1/015 MA0-020(New rational quartic spline interpolation for image refinement)and UTP through a research grant YUTP:0153AA-H24(Spline Triangulation for Spatial Interpolation of Geophysical Data).
文摘This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.