Fischer indole cyclization of phenylhydrazine and various ketones using carboxyl-functionalized ionic liquid, 1-carboxymethyl- 3-methylimidazolium tetrafluoroborate (abbreviated as [crnmim] [BF4]) as catalyst was su...Fischer indole cyclization of phenylhydrazine and various ketones using carboxyl-functionalized ionic liquid, 1-carboxymethyl- 3-methylimidazolium tetrafluoroborate (abbreviated as [crnmim] [BF4]) as catalyst was successfully performed. The yields of the target compounds were 80-92%, the purities were 96-98%. The catalyst could be recovered and reused for at least six times without significant loss in activity.展开更多
A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of ...A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.展开更多
FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on th...FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.展开更多
Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental...Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental protection. However, the existing “acceptance-donation” mechanism is only applicable to bimetallic catalysts and nonmetallic double-atom catalysts containing boron atoms. Herein, a novel “capture-activation-recapture” mechanism for metal-nonmetal double-atom catalyst is proposed to solve the problem by adjusting the coordination environments of nonmetallic atoms and utilizing the activation effect of metal atoms on nitrogen. Based on this mechanism, the nitrogen reduction reaction (NRR) activity of 48 structures is calculated by density functional theory calculation, and four candidates are selected as outstanding electrocatalytic nitrogen reduction catalysts: Si-Fe@NG (U_(L) = –0.14 V), Si-Co@NG (U_(L)= –0.15 V), Si-Mo@BP1 (U_(L) = 0 V), and Si-Re@BP1 (U_(L) = –0.02 V). The analyses of electronic properties further confirm “capture-activation-recapture” mechanism and suggest that the difference in valence electron distribution between metal and Si atoms triggers the activation of N≡N bonds. In addition, a machine learning approach is utilized to generate an expression and an intrinsic descriptor that considers the coordination environment to predict the limiting potential. This study offers profound insight into the synergistic mechanism of TM and Si for NRR and guidance in the design of novel double-atom nitrogen fixation catalysts.展开更多
A modified method of preparing crown functionalized linear polysiloxane has been described.4'-allylbenzo-15-crown-5 was subjected to hydrosilylation with methyldichlorosilane,followed bypolycondensation with silan...A modified method of preparing crown functionalized linear polysiloxane has been described.4'-allylbenzo-15-crown-5 was subjected to hydrosilylation with methyldichlorosilane,followed bypolycondensation with silanol-terminated polydimethylsiloxane to give the title crownfunctionalized linear polysiloxane. It was found that the polysiloxane could be coordinated withplatinum salt to form platinum complex, which could catalyze the hydrosilylation of olefins withtriethoxysilane efficiently.展开更多
A small amount of Fe3O4 catalyst is known to substantially improve the adsorption and desorption thermodynamics and kinetics of Mg-based materials. Using density functional theory in combination with nudged elastic ba...A small amount of Fe3O4 catalyst is known to substantially improve the adsorption and desorption thermodynamics and kinetics of Mg-based materials. Using density functional theory in combination with nudged elastic band method,the dissociative chemisorptions of hydrogen on both pure and Fe-doped Mg(0001) surfaces were studied. The adsorption energy calculations show that a weakly physisorbed state above pure and Fe-doped Mg surface atoms can serve as a precursor state to dissociative chemisorption. Then,the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier(1.08 eV) of hydrogen molecule on a pure Mg(0001) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0001) surface,the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe.展开更多
Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding th...Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products.展开更多
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
Rational design and synthesis of low-cost trifunctional electrocatalysts with improved stability and superior electrocatalytic activity for oxygen reduction reaction(ORR),oxygen evolution reaction(OER),and hydrogen ev...Rational design and synthesis of low-cost trifunctional electrocatalysts with improved stability and superior electrocatalytic activity for oxygen reduction reaction(ORR),oxygen evolution reaction(OER),and hydrogen evolution reaction(HER) are highly desirable but remain as the bottlenecks at the current state of technology.In this paper,the cobalt-iron(Co-Fe) composite supported on nitrogen-doped carbon nanotubes(CoFe composite/NCNTs) is synthesized.The intrinsic OER and HER catalytic activities of this CoFe composite/NCNTs composite are significantly improved with palladium(Pd) nanocluster decoration [Pd-coated(CoFe composite/NCNTs)].The as-prepared Pd-coated(CoFe composite/NCNTs) catalyst exhibits excellent trifunctional electrocatalytic activity and stability due to the interfacial coupling between Pd and(CoFe composite/NCNTs).This catalyst is successfully employed in the water electrolysis cell as both OER and HER electrode catalysts,flexible rechargeable Zn-air battery as the bifunctional ORR and OER electrode catalyst.The cell voltage of this catalyst-coated electrodes requires only 1.60 V to achieve 10 mA cm^(-2) current density for water electrolysis cell,which is comparable to and even better than that of Pt/C and Ir/C based cell.The primary Zn-air battery using this catalyst shows a constant high open-circuit voltage(OCV) of 1.47 V and a maximum power density of 261 mW cm^(-2) in the flooded mode configuration.Most importantly,a flexible Zn-air battery with this catalyst runs very smoothly without a change in voltage gap during flat,bending,and twisting positions.展开更多
Teroolymerization of enichlorohydrin(ECH)-maleic anhydride(MAn)-carbon dioxide(CO;) was carried out by using Y(P;);-Al(i-Bu);as catalyst for the first time.The terpolymersobtained were characterized by IR and;...Teroolymerization of enichlorohydrin(ECH)-maleic anhydride(MAn)-carbon dioxide(CO;) was carried out by using Y(P;);-Al(i-Bu);as catalyst for the first time.The terpolymersobtained were characterized by IR and;H-NMR.It was foundthat the composition of the teroolymer was influenced by theaddition mode,initial monomer charge ratio,etc.展开更多
Propyl-sulfonic (PS) acid-functionalized nanoparticles were synthesized, characterized and evaluated as catalysts for pretreatment of corn stover. Silica coated nanoparticles were functionalized with 0.5% mercaptoprop...Propyl-sulfonic (PS) acid-functionalized nanoparticles were synthesized, characterized and evaluated as catalysts for pretreatment of corn stover. Silica coated nanoparticles were functionalized with 0.5% mercaptopropyltrimethoxysilane (MPTMS) at neutral pH in a mixture of water and ethanol. Sulfur contents of the acid functionalized nanoparticles, measured in a CHNS analyzer, varied from 6%-10%, and the acid load ranged from 0.040 to 0.066 mmol H+/g. A Box-Behnken design was employed to calculate the minimum number experiments required to obtain an estimate of the surface response for temperature, catalyst load, and %S content of the catalyst. Pretreatment of corn stover was carried out at three temperature levels 160, 180, and 200°C for 1 h. Three levels of catalyst load were used 0.1, 0.2, and 0.3 g of catalyst per gram of biomass. Hydro-thermolysis controls were carried at each temperature level. The catalyst load did not have an effect on the glucose yield at 160°C, and the average glucose yield obtained at this temperature was 59.0%. The glucose yield was linearly correlated to the catalyst load during pretreatment at 180°C, and a maximum glucose yield of 90% was reached when using 0.2 g of PS nanoparticles that had a total sulfur content of 6.1%. Complete hydrolysis of glucose was reached at 200°C but the average xylose yield was 4.6%, and about 20.2% of the combined glucose and xylose were lost as hydroxymethylfurfural and furfural. Results showed that acid-functionalized nanoparticles can be potential catalysts for the pretreatment of biomass for its later conversion to ethanol.展开更多
Subnanometer metal clusters play an increasingly important role in heterogeneous catalysis due to their high catalytic activity and selectivity.In this work,by means of the density functional theory(DFT) calculations,...Subnanometer metal clusters play an increasingly important role in heterogeneous catalysis due to their high catalytic activity and selectivity.In this work,by means of the density functional theory(DFT) calculations,the catalytic activities of transition metal clusters with precise numbers of atoms supported on graphdiyne(TM_(1-4)@GDY,TM=V,Cr,Mn,Fe,Co,Ni,Cu,Ru,Rh,Pd,Ir,Pt) were investigated for oxygen evolution reactions(OER),oxygen reduction reactions(ORR) and hydrogen evolution reactions(HER).The computed results reveal that the Pd_(2),Pd_(4) and Pt_(1) anchored graphdiyne can serve as trifunctional catalysts for OER/ORR/HER with the overpotentials of 0.49/0.37/0.06,0.45/0.33/0.12 and 0.37/0.43/0.01 V,respectively,while Pd_(1) and Pt_(2)@graphdiyne can exhibit excellent catalytic performance for water splitting(OER/HER) with the overpotentials of 0.55/0.17 and 0.43/0.03 V.In addition,Ni_(1) and Pd_(3) anchored GDY can perform as bifunctional catalysts for metal-air cells(OER/ORR) and fuels cells(ORR/HER) with the overpotentials of 0.34/0.32 and 0.42/0.04 V,respectively.Thus,by precisely controlling the numbers of atoms in clusters,the TM_(1-4) anchored graphdiyne can serve as promising multifunctional electrocatalysts for OER/ORR/HER,which may provide an instructive strategy to design catalysts for the energy conversation and storage devices.展开更多
Several bis(trifluoromethylsulfonyl)phenylamines have been synthesized and used as internal donors for the preparation of heterogeneous Ziegler-Natta catalysts for propylene polymerization. These new cata- lysts are...Several bis(trifluoromethylsulfonyl)phenylamines have been synthesized and used as internal donors for the preparation of heterogeneous Ziegler-Natta catalysts for propylene polymerization. These new cata- lysts are highly active and stereospecific in combination with an external donor for the polymerization of propylene. The activity of these catalysts is dramatically influenced by the electronic capability of the phenyl substituents on the sulfonyl phenylamines. Therefore, the performances of the catalysts can be modified by adjusting the electronic property of the phenyl substituents of the sulfonyl phenylamines.展开更多
Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were stu...Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.展开更多
In this research,to remove sulfur and nitrogen compounds from heavy naphtha,various nanocatalysts were prepared through supporting NiMo over nanoporous graphene and evaluated in hydrodesulfurization and hydrodenitroge...In this research,to remove sulfur and nitrogen compounds from heavy naphtha,various nanocatalysts were prepared through supporting NiMo over nanoporous graphene and evaluated in hydrodesulfurization and hydrodenitrogenation reactions.The nanoporous graphene was initially functionalized in order to facilitate the metal being loaded on it.Three different methods were used to functionalize the nanoporous graphene.The NiMo/nanoporous graphene nanocatalysts were characterized by field emission scanning electron microscopy,Fourier transform infrared spectroscopy,X-ray diffraction,inductively coupled plasma optical emission spectrometry,temperature-programmed reduction,nitrogen adsorption-desorption isotherms and transmission electron microscopy techniques.Catalyst performance was evaluated in terms of conversions of sulfur,mercaptans(R-SH)and nitrogen compounds.It was found that the functionalized nanoporous graphene support could significantly enhance the catalytic performance in comparison with the industrial NiMo/alumina catalyst.Among the functionalized graphene supports,amine-functionalized graphene exhibited the best results.By using NiMo supported over amine-functionalized graphene,the conversions of total sulfur and R-SH reached 97.8%and 98.1%,respectively.展开更多
A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found th...A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.展开更多
The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fab...The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR.展开更多
This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure...This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.展开更多
基金the Key Project of Shanghai Educational Committee(No.06ZZ82)
文摘Fischer indole cyclization of phenylhydrazine and various ketones using carboxyl-functionalized ionic liquid, 1-carboxymethyl- 3-methylimidazolium tetrafluoroborate (abbreviated as [crnmim] [BF4]) as catalyst was successfully performed. The yields of the target compounds were 80-92%, the purities were 96-98%. The catalyst could be recovered and reused for at least six times without significant loss in activity.
基金the National Natural Science Foundation of China (Grant Nos. 21273058, 21673064, 51802059 and 21503059)China Postdoctoral Science Foundation (Grant Nos. 2018M631938, 2018T110307 and 2017M621284)+1 种基金Heilongjiang Postdoctoral Fund (LBH-Z17074)Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2019040 and 2019041)
文摘A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.
基金funded by the National Natural Science Foundation of China (52100072)the Beijing Natural Science Foundation(8214056)+2 种基金the special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology,the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21021101)the National Key Research and Development Program of China (2019YFA0705803)Scientific Research Common Program of Beijing Municipal Commission of Education(KM202010017006)。
文摘FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.
基金supports by the National Natural Science Foundation of China(52271113)the Natural Science Foundation of Shaanxi Province,China(2020JM 218)+1 种基金the Fundamental Research Funds for the Central Universities(CHD300102311405)HPC platform,Xi’an Jiaotong University.
文摘Compared with the traditional industrial nitrogen fixation, electrocatalytic methods, especially those utilizing double-atom catalysts containing nonmetals, can give good consideration to the economy and environmental protection. However, the existing “acceptance-donation” mechanism is only applicable to bimetallic catalysts and nonmetallic double-atom catalysts containing boron atoms. Herein, a novel “capture-activation-recapture” mechanism for metal-nonmetal double-atom catalyst is proposed to solve the problem by adjusting the coordination environments of nonmetallic atoms and utilizing the activation effect of metal atoms on nitrogen. Based on this mechanism, the nitrogen reduction reaction (NRR) activity of 48 structures is calculated by density functional theory calculation, and four candidates are selected as outstanding electrocatalytic nitrogen reduction catalysts: Si-Fe@NG (U_(L) = –0.14 V), Si-Co@NG (U_(L)= –0.15 V), Si-Mo@BP1 (U_(L) = 0 V), and Si-Re@BP1 (U_(L) = –0.02 V). The analyses of electronic properties further confirm “capture-activation-recapture” mechanism and suggest that the difference in valence electron distribution between metal and Si atoms triggers the activation of N≡N bonds. In addition, a machine learning approach is utilized to generate an expression and an intrinsic descriptor that considers the coordination environment to predict the limiting potential. This study offers profound insight into the synergistic mechanism of TM and Si for NRR and guidance in the design of novel double-atom nitrogen fixation catalysts.
基金This work was supported by the National Natural Science Foundation of China and the Natural Science Foundation of Hubei Province
文摘A modified method of preparing crown functionalized linear polysiloxane has been described.4'-allylbenzo-15-crown-5 was subjected to hydrosilylation with methyldichlorosilane,followed bypolycondensation with silanol-terminated polydimethylsiloxane to give the title crownfunctionalized linear polysiloxane. It was found that the polysiloxane could be coordinated withplatinum salt to form platinum complex, which could catalyze the hydrosilylation of olefins withtriethoxysilane efficiently.
基金Project(2007AA05Z118) supported by the Hi-tech Research and Development Program of ChinaProject(50804029, 50504010) supported by the National Natural Science Foundation of China+1 种基金Project(200746) supported by Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(IRT0739) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A small amount of Fe3O4 catalyst is known to substantially improve the adsorption and desorption thermodynamics and kinetics of Mg-based materials. Using density functional theory in combination with nudged elastic band method,the dissociative chemisorptions of hydrogen on both pure and Fe-doped Mg(0001) surfaces were studied. The adsorption energy calculations show that a weakly physisorbed state above pure and Fe-doped Mg surface atoms can serve as a precursor state to dissociative chemisorption. Then,the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier(1.08 eV) of hydrogen molecule on a pure Mg(0001) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0001) surface,the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe.
基金the HUST-QMUL Strategic Partnership Research Funding(No.2022-HUST-QMUL-SPRF-03),which funded the project“Design of Binuclear Copper Electrocatalysts for CO_(2) Conversion from First Principles”the China Scholarship Council for financial support。
文摘Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products.
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
基金the support of the National Nature Science Foundation of China (21908124)Zhaoqing Xijiang Talent Program。
文摘Rational design and synthesis of low-cost trifunctional electrocatalysts with improved stability and superior electrocatalytic activity for oxygen reduction reaction(ORR),oxygen evolution reaction(OER),and hydrogen evolution reaction(HER) are highly desirable but remain as the bottlenecks at the current state of technology.In this paper,the cobalt-iron(Co-Fe) composite supported on nitrogen-doped carbon nanotubes(CoFe composite/NCNTs) is synthesized.The intrinsic OER and HER catalytic activities of this CoFe composite/NCNTs composite are significantly improved with palladium(Pd) nanocluster decoration [Pd-coated(CoFe composite/NCNTs)].The as-prepared Pd-coated(CoFe composite/NCNTs) catalyst exhibits excellent trifunctional electrocatalytic activity and stability due to the interfacial coupling between Pd and(CoFe composite/NCNTs).This catalyst is successfully employed in the water electrolysis cell as both OER and HER electrode catalysts,flexible rechargeable Zn-air battery as the bifunctional ORR and OER electrode catalyst.The cell voltage of this catalyst-coated electrodes requires only 1.60 V to achieve 10 mA cm^(-2) current density for water electrolysis cell,which is comparable to and even better than that of Pt/C and Ir/C based cell.The primary Zn-air battery using this catalyst shows a constant high open-circuit voltage(OCV) of 1.47 V and a maximum power density of 261 mW cm^(-2) in the flooded mode configuration.Most importantly,a flexible Zn-air battery with this catalyst runs very smoothly without a change in voltage gap during flat,bending,and twisting positions.
文摘Teroolymerization of enichlorohydrin(ECH)-maleic anhydride(MAn)-carbon dioxide(CO;) was carried out by using Y(P;);-Al(i-Bu);as catalyst for the first time.The terpolymersobtained were characterized by IR and;H-NMR.It was foundthat the composition of the teroolymer was influenced by theaddition mode,initial monomer charge ratio,etc.
基金funded by NSF EPSCoR Kansas Center for Solar Energy Research and facilitated by Kansas State Universitysupported by National Science Foundation Grant:From Crops to Commuting:Integrating the Social,Technological,and Agricultural Aspects of Renewable and Sustainable Biorefining(I-STAR),NSF Award No.:DGE-0903701.
文摘Propyl-sulfonic (PS) acid-functionalized nanoparticles were synthesized, characterized and evaluated as catalysts for pretreatment of corn stover. Silica coated nanoparticles were functionalized with 0.5% mercaptopropyltrimethoxysilane (MPTMS) at neutral pH in a mixture of water and ethanol. Sulfur contents of the acid functionalized nanoparticles, measured in a CHNS analyzer, varied from 6%-10%, and the acid load ranged from 0.040 to 0.066 mmol H+/g. A Box-Behnken design was employed to calculate the minimum number experiments required to obtain an estimate of the surface response for temperature, catalyst load, and %S content of the catalyst. Pretreatment of corn stover was carried out at three temperature levels 160, 180, and 200°C for 1 h. Three levels of catalyst load were used 0.1, 0.2, and 0.3 g of catalyst per gram of biomass. Hydro-thermolysis controls were carried at each temperature level. The catalyst load did not have an effect on the glucose yield at 160°C, and the average glucose yield obtained at this temperature was 59.0%. The glucose yield was linearly correlated to the catalyst load during pretreatment at 180°C, and a maximum glucose yield of 90% was reached when using 0.2 g of PS nanoparticles that had a total sulfur content of 6.1%. Complete hydrolysis of glucose was reached at 200°C but the average xylose yield was 4.6%, and about 20.2% of the combined glucose and xylose were lost as hydroxymethylfurfural and furfural. Results showed that acid-functionalized nanoparticles can be potential catalysts for the pretreatment of biomass for its later conversion to ethanol.
基金financially supported by Fundamental Research Funds for Heilongjiang Province universities (No.2021-KYYWF-0184)Harbin Normal University Graduate Student Innovation Project (No.HSDSSCX2023-30)。
文摘Subnanometer metal clusters play an increasingly important role in heterogeneous catalysis due to their high catalytic activity and selectivity.In this work,by means of the density functional theory(DFT) calculations,the catalytic activities of transition metal clusters with precise numbers of atoms supported on graphdiyne(TM_(1-4)@GDY,TM=V,Cr,Mn,Fe,Co,Ni,Cu,Ru,Rh,Pd,Ir,Pt) were investigated for oxygen evolution reactions(OER),oxygen reduction reactions(ORR) and hydrogen evolution reactions(HER).The computed results reveal that the Pd_(2),Pd_(4) and Pt_(1) anchored graphdiyne can serve as trifunctional catalysts for OER/ORR/HER with the overpotentials of 0.49/0.37/0.06,0.45/0.33/0.12 and 0.37/0.43/0.01 V,respectively,while Pd_(1) and Pt_(2)@graphdiyne can exhibit excellent catalytic performance for water splitting(OER/HER) with the overpotentials of 0.55/0.17 and 0.43/0.03 V.In addition,Ni_(1) and Pd_(3) anchored GDY can perform as bifunctional catalysts for metal-air cells(OER/ORR) and fuels cells(ORR/HER) with the overpotentials of 0.34/0.32 and 0.42/0.04 V,respectively.Thus,by precisely controlling the numbers of atoms in clusters,the TM_(1-4) anchored graphdiyne can serve as promising multifunctional electrocatalysts for OER/ORR/HER,which may provide an instructive strategy to design catalysts for the energy conversation and storage devices.
文摘Several bis(trifluoromethylsulfonyl)phenylamines have been synthesized and used as internal donors for the preparation of heterogeneous Ziegler-Natta catalysts for propylene polymerization. These new cata- lysts are highly active and stereospecific in combination with an external donor for the polymerization of propylene. The activity of these catalysts is dramatically influenced by the electronic capability of the phenyl substituents on the sulfonyl phenylamines. Therefore, the performances of the catalysts can be modified by adjusting the electronic property of the phenyl substituents of the sulfonyl phenylamines.
文摘Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.
文摘In this research,to remove sulfur and nitrogen compounds from heavy naphtha,various nanocatalysts were prepared through supporting NiMo over nanoporous graphene and evaluated in hydrodesulfurization and hydrodenitrogenation reactions.The nanoporous graphene was initially functionalized in order to facilitate the metal being loaded on it.Three different methods were used to functionalize the nanoporous graphene.The NiMo/nanoporous graphene nanocatalysts were characterized by field emission scanning electron microscopy,Fourier transform infrared spectroscopy,X-ray diffraction,inductively coupled plasma optical emission spectrometry,temperature-programmed reduction,nitrogen adsorption-desorption isotherms and transmission electron microscopy techniques.Catalyst performance was evaluated in terms of conversions of sulfur,mercaptans(R-SH)and nitrogen compounds.It was found that the functionalized nanoporous graphene support could significantly enhance the catalytic performance in comparison with the industrial NiMo/alumina catalyst.Among the functionalized graphene supports,amine-functionalized graphene exhibited the best results.By using NiMo supported over amine-functionalized graphene,the conversions of total sulfur and R-SH reached 97.8%and 98.1%,respectively.
基金This work was supported by the National Natural Science Foundation of China (grant No. 20174034, 20274037).
文摘A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.
文摘The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR.
基金the Sinopec Beijing Research Institute of Chemical Industry for its financial support (No. 5-12ZS0419, 5-10ZS0245, 5-12ZS0270)
文摘This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.