Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We fur...Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces in terms of dyadic functions of H. This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.展开更多
We obtain certain time decay and regularity estimates for 3D Schroedinger equation with a potential in the Kato class by using Besov spaces associated with Schroedinger operators.
Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz ...Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R^n× R^m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R^n× R^m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R^n× R^m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R^n× R^m) to L~φ(R^n× R^m)and from H~φ_A(R^n×R^m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R^n× R^m and are new even for classical product Orlicz-Hardy spaces.展开更多
文摘Let H be a Schroedinger operator on R^n. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces in terms of dyadic functions of H. This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.
文摘We obtain certain time decay and regularity estimates for 3D Schroedinger equation with a potential in the Kato class by using Besov spaces associated with Schroedinger operators.
基金supported by National Natural Science Foundation of China (Grant Nos. 11671414, 11271091, 11471040, 11461065, 11661075, 11571039 and 11671185)
文摘Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R^n× R^m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R^n× R^m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R^n× R^m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R^n× R^m) to L~φ(R^n× R^m)and from H~φ_A(R^n×R^m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R^n× R^m and are new even for classical product Orlicz-Hardy spaces.