期刊文献+
共找到13,623篇文章
< 1 2 250 >
每页显示 20 50 100
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
1
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Hemispheric asymmetries and network dysfunctions in adolescent depression:A neuroimaging study using resting-state functional magnetic resonance imaging
2
作者 Ying Xiong Ren-Qiang Yu +4 位作者 Xing-Yu Wang Shun-Si Liang Jie Ran Xiao Li Yi-Zhi Xu 《World Journal of Psychiatry》 2025年第2期100-108,共9页
BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological s... BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies. 展开更多
关键词 Adolescent depression Brain network connectivity Neuroimaging biomarkers functional magnetic resonance imaging Default mode network Salience network Hemispheric asymmetry
下载PDF
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis 被引量:1
3
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROSS-SECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
下载PDF
Brain Functional Network Changes in Patients with Poststroke Cognitive Impairment Following Acupuncture Therapy
4
作者 Ran Wang Nian Liu +4 位作者 Hao Xu Peng Zhang Xiaohua Huang Lin Yang Xiaoming Zhang 《Health》 2024年第9期856-871,共16页
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t... Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients. 展开更多
关键词 Cognitive Decline Poststroke Cognitive Impairment functional Magnetic Resonance Imaging Brain functional network Graph Theoretical Analysis
下载PDF
Assessing target optical camouflage effects using brain functional networks:A feasibility study
5
作者 Zhou Yu Li Xue +4 位作者 Weidong Xu Jun Liu Qi Jia Jianghua Hu Jidong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期69-77,共9页
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c... Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy. 展开更多
关键词 Camouflage effect evaluation Electroencephalography(EEG) Brain functional networks Machine learning
下载PDF
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
6
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep Neural network Random Vector functional-Link (RVFL) network Alternating Direction Method of Multipliers (ADMM)
下载PDF
ADAPTIVE PREDICTIVE CONTROL OF NEAR-SPACE VEHICLE USING FUNCTIONAL LINK NETWORK 被引量:3
7
作者 都延丽 吴庆宪 姜长生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期148-154,共7页
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti... A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking. 展开更多
关键词 predictive control systems adaptive control systems UNCERTAINTY functional link network near-space vehicle
下载PDF
Time-stamped predictive functional control for networked control systems with random delays
8
作者 张奇智 张卫东 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期149-152,共4页
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is... The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance. 展开更多
关键词 networked control systems random delays predictive functional control industrial Ethernet
下载PDF
Functional near-infrared spectroscopy in non-invasive neuromodulation 被引量:5
9
作者 Congcong Huo Gongcheng Xu +6 位作者 Hui Xie Tiandi Chen Guangjian Shao Jue Wang Wenhao Li Daifa Wang Zengyong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1517-1522,共6页
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson... Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases. 展开更多
关键词 brain-computer interface cerebral neural networks functional near-infrared spectroscopy neural circuit NEUROFEEDBACK neurological diseases NEUROMODULATION non-invasive brain stimulation transcranial electrical stimulation transcranial electrical stimulation
下载PDF
Prediction of the residual strength of clay using functional networks 被引量:6
10
作者 S.Z.Khan Shakti Suman +1 位作者 M.Pavani S.K.Das 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期67-74,共8页
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s... Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output. 展开更多
关键词 LANDSLIDES Residual strength Index properties Prediction model functional networks
下载PDF
The development of brain functional connectivity networks revealed by resting-state functional magnetic resonance imaging 被引量:3
11
作者 Chao-Lin Li Yan-Jun Deng +2 位作者 Yu-Hui He Hong-Chang Zhai Fu-Cang Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1419-1429,共11页
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the... Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013. 展开更多
关键词 nerve REGENERATION functional MRI BRAIN network functional connectivity RESTING-STATE ICA BRAIN development children RESTING-STATE networkS INFANT template standardized neural REGENERATION
下载PDF
Changes in brain functional network connectivity after stroke 被引量:3
12
作者 Wei Li Yapeng Li +1 位作者 Wenzhen Zhu Xi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第1期51-60,共10页
Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore func... Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke. 展开更多
关键词 nerve regeneration brain injury STROKE motor areas functional magnetic resonanceimaging brain network independent component analysis functional network connectivity neuralplasticity NSFC grant neural regeneration
下载PDF
Small-worldness of brain networks after brachial plexus injury: a resting-state functional magnetic resonance imaging study 被引量:6
13
作者 Wei-Wei Wang Ye-Chen Lu +4 位作者 Wei-Jun Tang Jun-Hai Zhang Hua-Ping Sun Xiao-Yuan Feng Han-Qiu Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期1061-1065,共5页
Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel... Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged. 展开更多
关键词 nerve regeneration brachial plexus injury functional magnetic resonance imaging small-world network small-world property topology properties functional reorganization clustering coefficient shortest path peripheral nerve injury neural regeneration
下载PDF
Adaptive functional link network control of near-space vehicles with dynamical uncertainties 被引量:5
14
作者 Yanli Du Qingxian Wu Changsheng Jiang Jie Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期868-876,共9页
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ... The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness. 展开更多
关键词 adaptive control system dynamical uncertainties partially feedback functional link network near-space vehicle.
下载PDF
Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana 被引量:4
15
作者 Qing-Bo Yu Guang Li +13 位作者 Guan Wang Jing-Chun Sun Peng-Cheng Wang Chen Wang Hua-Ling Mi Wei-Min Ma Jian Cui Yong-Lan Cui Kang Chong Yi-Xue Li Yu-Hua Li Zhongming Zhao Tie-LiuShi Zhong-Nan Yang 《Cell Research》 SCIE CAS CSCD 2008年第10期1007-1019,共13页
Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of pr... Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis. 展开更多
关键词 ARABIDOPSIS chloroplast protein network functional linkage PHOTOSYNTHESIS
下载PDF
Analysis of a phase synchronized functional network based on the rhythm of brain activities 被引量:2
16
作者 李凌 金贞兰 李斌 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期512-518,共7页
Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this ... Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4-7 Hz), alpha (8-13 Hz) and beta (14-30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coetticient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm, 展开更多
关键词 ELECTROENCEPHALOGRAM phase synchronization RHYTHM functional brain network
下载PDF
Service Function Chain Migration in LEO Satellite Networks
17
作者 Geng Yuhui Wang Niwei +5 位作者 Chen Xi Xu Xiaofan Zhou Changsheng Yang Junyi Xiao Zhenyu Cao Xianbin 《China Communications》 SCIE CSCD 2024年第3期247-259,共13页
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat... With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity. 展开更多
关键词 network function virtualization(NFV) resource allocation satellite networks service function chain(SFC) SFC migration SFC placement soft-ware defined network(SDN)
下载PDF
Network pharmacological prediction and molecular docking analysis of the combination of Atractylodes macrocephala Koidz.and Paeonia lactiflora Pall.in the treatment of functional constipation and its verification 被引量:5
18
作者 Yuxiao Meng Xiaojun Li +2 位作者 Xiaoting Wang Lu Zhang Jiaqi Guan 《Animal Models and Experimental Medicine》 CSCD 2022年第2期120-132,共13页
Background:We aimed to reveal the mechanism of functional constipation in the treatment of Atractylodes macrocephala Koidz.(AMK)and Paeonia lactiflora Pall.(PLP).Methods:The main active ingredients of AMK and PLP were... Background:We aimed to reveal the mechanism of functional constipation in the treatment of Atractylodes macrocephala Koidz.(AMK)and Paeonia lactiflora Pall.(PLP).Methods:The main active ingredients of AMK and PLP were screened by the Traditional Chinese Medicine Systems Pharmacology(TCMSP)platform.A database of functional constipation targets was established by GeneCard and OMIM.An“ingredient-target”network map was constructed with Cytoscape software(version 3.7.1),and molecular docking analysis was performed on the components and genes with the highest scores.The rats in the normal group were given saline,and those in the other groups were given 10 mg/kg diphenoxylate once a day for 14 days.The serum and intestinal tissue levels of adenosine monophosphate(cAMP),protein kinase A(PKA),and adenylyl cyclase(AC)of the rats and aquaporin(AQP)1,AQP3,and AQP8 were measured.Results:AMK and PLP had a significant role in the regulation of targets in the treatment of functional constipation.After treatment with AMK,PLP,or mosapride,the serum and intestinal tissue levels of AC,cAMP,and PKA were significantly downregulated.Groups receiving AMK and PLP or mosapride exhibited a reduction in the level of AQP1,AQP3,and AQP8 to varying degrees.Conclusion:Molecular docking analysis revealed that AMK and PLP had a significant role in the regulation of targets in the treatment of functional constipation.Studies have confirmed that AMK and PLP can also affect AC,cAMP,and PKA.AC,cAMP,and PKA in model rats were significantly downregulated.AQP expression is closely related to AC,cAMP,and PKA.AMK and PLP can reduce the expression of AQP1,AQP3,and AQP9 in the colon of constipated rats. 展开更多
关键词 coupling of AMK and PLP functional constipation mechanism network pharmacology
下载PDF
DiriNet:An Estimation Network for Spectral Response Function and Point Spread Function
19
作者 Ting Hu Siyuan Cheng Chang Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期287-297,共11页
Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few wo... Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network. 展开更多
关键词 Dirichlet network point spread function spectral response function hyper-spectralimage multi-spectral image
下载PDF
Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays 被引量:4
20
作者 Chengyu Xie Hoang Nguyen +1 位作者 Yosoon Choi Danial Jahed Armaghani 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期34-51,共18页
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures... Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy. 展开更多
关键词 Diaphragm wall deflection Braced excavation Finite element analysis Clays Meta-heuristic algorithms functional linked neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部