Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ...Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.展开更多
On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this stu...On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this study described the effects of green manure on the microbial communities in the red paddy soils using 454 pyrosequencing for the 16 S r RNA gene. The Chao1 richness and non-parametric Shannon's index increased in all soil samples that received green manure treatments. The communities' structures with the green manure applications were significantly dissimilar from that under the winter fallow. Using Metastats tests, many genera in the RRG, RRP and RRV soils were significantly different from those in the RRF soil, including a number of genera that functioned in the nitrogen and sulfur cycles. Analyses of the genera with these functions revealed the shifts in microbial ecosystem functions after long-term green manuring. Changes in the microbial communities increased the ammonium supply and decreased the soil acidification in green-manure-amended soils. Together, these data suggested powerful effects of green manure on both the microbial communities and the biogeochemical cycle driven by the shifts in bacterial functional groups.展开更多
The potential ecotoxicologial risks of methamidophos,copper,and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rD...The potential ecotoxicologial risks of methamidophos,copper,and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach,and functional characteristics at community levels by using BIOLOG^(GN) system analysis method as well as two conventional methods(DHA and SIR).All results of DGGE banding fingerprint patterns(amplified by bacterial specific 16S rDNA V_(3) high variable region universal primer)indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos,copper,especially some of their combinations had worse effects than their corresponding single factors.In addition,the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the bacterial community.The effects of the single factors with lower concentrations on the communiy structure were weaker than those with higher concentrations.Moreover,the bacterial community structures under the combined stresses of methamidophos and copper were significantly different from those of control and their corresponding single factors.The change of DHA and carbon source substrate utilizing fingerprint patterns based on BIOLOG^(GN)system were two relatively sensitive directors corresponding to the stress presented in this study.Between methamodophos and copper,there happened the significant joint-toxic actions when they were used in combination on DHA and carbon source substrate utilizing fingerprint patterns of soil bacterial communities.The DHA of soil under the combined stresses was lower than that of the control and that under the single factors,and the BIOLOG^(GN) substrate utilizing patterns of soil treated by combinations were distinctively differentiated from the control and their corresponding single factors.From all of above,the methamidophos,copper,especially their combinations had the clearly potential ecotoxicological risks to influence the natural soil microbial ecological system by changing the structure,richness,and the functional characteristics of microbial community.展开更多
Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habit...Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habitat filtering and dispersal limitation,and many of these works have utilized the assumption of species spatial independence to simplify the complexity of the spatial modeling in natural communities when given dispersal limitation and/or habitat filtering.One potential drawback of this simplification is that it does not consider species interactions and how they may influence the spatial distribution of species,phylogenetic and functional diversity.Here,we assess the validity of the assumption of species spatial independence using data from a subtropical forest plot in southeastern China.Methods We use the four most commonly employed spatial statistical models—the homogeneous Poisson process representing pure random effect,the heterogeneous Poisson process for the effect of habitat heterogeneity,the homogenous Thomas process for sole dispersal limitation and the heterogeneous Thomas process for joint effect of habitat heterogeneity and dispersal limitation—to investigate the contribution of different mechanisms in shaping the species,phylogenetic and functional structures of communities.Important Findings Our evidence from species,phylogenetic and functional diversity demonstrates that the habitat filtering and/or dispersal-based models perform well and the assumption of species spatial independence is relatively valid at larger scales(50×50 m).Conversely,at local scales(10×10 and 20×20 m),the models often fail to predict the species,phylogenetic and functional diversity,suggesting that the assumption of species spatial independence is invalid and that biotic interactions are increasingly important at these spatial scales.展开更多
基金funded by the National Natural Science Foundation of China(NSFC31301843)the National Nonprofit Institute Research Grant of Chinese Academy of Agricultural Sciences(IARRP-202-5)
文摘Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201103005)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(2013–2017)
文摘On the basis of a long-term(30 years) field experiment that involved four rotation systems, rice-rice-winter fallow(RRF), rice-rice-ryegrass(RRG), rice-rice-rape(RRP), and rice-rice-milk vetch(RRV), this study described the effects of green manure on the microbial communities in the red paddy soils using 454 pyrosequencing for the 16 S r RNA gene. The Chao1 richness and non-parametric Shannon's index increased in all soil samples that received green manure treatments. The communities' structures with the green manure applications were significantly dissimilar from that under the winter fallow. Using Metastats tests, many genera in the RRG, RRP and RRV soils were significantly different from those in the RRF soil, including a number of genera that functioned in the nitrogen and sulfur cycles. Analyses of the genera with these functions revealed the shifts in microbial ecosystem functions after long-term green manuring. Changes in the microbial communities increased the ammonium supply and decreased the soil acidification in green-manure-amended soils. Together, these data suggested powerful effects of green manure on both the microbial communities and the biogeochemical cycle driven by the shifts in bacterial functional groups.
基金This work was supported in part by the Knowledge Innovation Engineering Action,the Chinese Academy of Sciences(KZCX2-SW-416)the National Natural Science Foundation of China(Grant No.20225722).
文摘The potential ecotoxicologial risks of methamidophos,copper,and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach,and functional characteristics at community levels by using BIOLOG^(GN) system analysis method as well as two conventional methods(DHA and SIR).All results of DGGE banding fingerprint patterns(amplified by bacterial specific 16S rDNA V_(3) high variable region universal primer)indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos,copper,especially some of their combinations had worse effects than their corresponding single factors.In addition,the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the bacterial community.The effects of the single factors with lower concentrations on the communiy structure were weaker than those with higher concentrations.Moreover,the bacterial community structures under the combined stresses of methamidophos and copper were significantly different from those of control and their corresponding single factors.The change of DHA and carbon source substrate utilizing fingerprint patterns based on BIOLOG^(GN)system were two relatively sensitive directors corresponding to the stress presented in this study.Between methamodophos and copper,there happened the significant joint-toxic actions when they were used in combination on DHA and carbon source substrate utilizing fingerprint patterns of soil bacterial communities.The DHA of soil under the combined stresses was lower than that of the control and that under the single factors,and the BIOLOG^(GN) substrate utilizing patterns of soil treated by combinations were distinctively differentiated from the control and their corresponding single factors.From all of above,the methamidophos,copper,especially their combinations had the clearly potential ecotoxicological risks to influence the natural soil microbial ecological system by changing the structure,richness,and the functional characteristics of microbial community.
基金NSFC grant of National Natural Science Foundation of China(31170401)Dimensions of biodiversity grant of Natural Science Fundation(NSF 1046113)Natural Science Foundation of Zhejiang Province(Y5100361).
文摘Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habitat filtering and dispersal limitation,and many of these works have utilized the assumption of species spatial independence to simplify the complexity of the spatial modeling in natural communities when given dispersal limitation and/or habitat filtering.One potential drawback of this simplification is that it does not consider species interactions and how they may influence the spatial distribution of species,phylogenetic and functional diversity.Here,we assess the validity of the assumption of species spatial independence using data from a subtropical forest plot in southeastern China.Methods We use the four most commonly employed spatial statistical models—the homogeneous Poisson process representing pure random effect,the heterogeneous Poisson process for the effect of habitat heterogeneity,the homogenous Thomas process for sole dispersal limitation and the heterogeneous Thomas process for joint effect of habitat heterogeneity and dispersal limitation—to investigate the contribution of different mechanisms in shaping the species,phylogenetic and functional structures of communities.Important Findings Our evidence from species,phylogenetic and functional diversity demonstrates that the habitat filtering and/or dispersal-based models perform well and the assumption of species spatial independence is relatively valid at larger scales(50×50 m).Conversely,at local scales(10×10 and 20×20 m),the models often fail to predict the species,phylogenetic and functional diversity,suggesting that the assumption of species spatial independence is invalid and that biotic interactions are increasingly important at these spatial scales.