This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of t...This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of these equations.展开更多
This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerica...This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerical examples are presented to show the ability and efficiency of this method.展开更多
In this paper,we mainly investigate the value distribution of meromorphic functions in Cmwith its partial differential and uniqueness problem on meromorphic functions in Cmand with its k-th total derivative sharing sm...In this paper,we mainly investigate the value distribution of meromorphic functions in Cmwith its partial differential and uniqueness problem on meromorphic functions in Cmand with its k-th total derivative sharing small functions.As an application of the value distribution result,we study the defect relation of a nonconstant solution to the partial differential equation.In particular,we give a connection between the Picard type theorem of Milliox-Hayman and the characterization of entire solutions of a partial differential equation.展开更多
Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a...Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.展开更多
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-s...The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.展开更多
In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability ...The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability of the scheme.Through the stability analyzing for the scheme,it was shown that the stability of the finite difference scheme with the incremental unknowns is improved when compared with the stability of the corresponding classic difference scheme.展开更多
How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducin...How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability.展开更多
In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex d...In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex differential(difference) equations to the systems of differential-difference equations.展开更多
Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The...Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The present paper deals with a general introduction and classification of partial differential equations and the numerical methods available in the literature for the solution of partial differential equations.展开更多
In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formu...In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.展开更多
In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration ...In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration Method (VIM). The results reveal that the two methods are very effective, simple and very close to the exact solution.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order converge...In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided.展开更多
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ...In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.展开更多
This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functio...This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.展开更多
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t&l...In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t</sub>. We begin with the simplest model problem, for heat conduction in a uniform medium. For this model problem, an explicit difference method is very straightforward in use, and the analysis of its error is easily accomplished by the use of a maximum principle. As we shall show, however, the numerical solution becomes unstable unless the time step is severely restricted, so we shall go on to consider other, more elaborate, numerical methods which can avoid such a restriction. The additional complication in the numerical calculation is more than offset by the smaller number of time steps needed. We then extend the methods to problems with more general boundary conditions, then to more general linear parabolic equations. Finally, we shall discuss the more difficult problem of the solution of nonlinear equations.展开更多
基金Supported by the NSF of China(60174010)Supported by NSF of Hebei Province(102160)Supported by NS of Education Office in Heibei Province(2004123)
文摘This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of these equations.
文摘This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerical examples are presented to show the ability and efficiency of this method.
基金partially supported by the NSFC(11271227,11271161)the PCSIRT(IRT1264)the Fundamental Research Funds of Shandong University(2017JC019)。
文摘In this paper,we mainly investigate the value distribution of meromorphic functions in Cmwith its partial differential and uniqueness problem on meromorphic functions in Cmand with its k-th total derivative sharing small functions.As an application of the value distribution result,we study the defect relation of a nonconstant solution to the partial differential equation.In particular,we give a connection between the Picard type theorem of Milliox-Hayman and the characterization of entire solutions of a partial differential equation.
文摘Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.
文摘The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
文摘The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability of the scheme.Through the stability analyzing for the scheme,it was shown that the stability of the finite difference scheme with the incremental unknowns is improved when compared with the stability of the corresponding classic difference scheme.
基金Project supported by the National Natural Science Foundation of China(No.10461005)
文摘How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability.
文摘In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex differential(difference) equations to the systems of differential-difference equations.
文摘Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The present paper deals with a general introduction and classification of partial differential equations and the numerical methods available in the literature for the solution of partial differential equations.
基金Supported by the National Natural Science Funds (11071075)the Natural Science Foundation of Shanghai(10ZR1409200)+1 种基金the National Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciencesthe E-Institutes of Shanghai Municipal Education Commissions(E03004)
文摘In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.
文摘In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration Method (VIM). The results reveal that the two methods are very effective, simple and very close to the exact solution.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).
文摘In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided.
文摘In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.
文摘This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90511009 and 40305006 Cprrespondence author,
文摘In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t</sub>. We begin with the simplest model problem, for heat conduction in a uniform medium. For this model problem, an explicit difference method is very straightforward in use, and the analysis of its error is easily accomplished by the use of a maximum principle. As we shall show, however, the numerical solution becomes unstable unless the time step is severely restricted, so we shall go on to consider other, more elaborate, numerical methods which can avoid such a restriction. The additional complication in the numerical calculation is more than offset by the smaller number of time steps needed. We then extend the methods to problems with more general boundary conditions, then to more general linear parabolic equations. Finally, we shall discuss the more difficult problem of the solution of nonlinear equations.