A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view...A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.展开更多
This paper is concerned with the oscillation of second order linear functional equations of the form x(g(t)) = p(t)x(t) + Q(t)X(g(2)(t)), Where p, Q, g : [t(0), infinity) --> R+ = [0, infinity) are given real value...This paper is concerned with the oscillation of second order linear functional equations of the form x(g(t)) = p(t)x(t) + Q(t)X(g(2)(t)), Where p, Q, g : [t(0), infinity) --> R+ = [0, infinity) are given real valued functions such that g(t) not equivalent to t, lim(t-->infinity) g(t) = infinity. It is proved here that when 0 less than or equal to m := lim inf(t-->infinity) Q(t)P(g(t)) less than or equal to 1/4 all solutions of this equation oscillate if the condition lim(t-->infinity) sup Q(t)P(g(t)) > (1 + root1 -4m/2)(2) (*) is satisfied. It should be emphasized that the condition (*) can not be improved in some sense.展开更多
In this article, we mainly investigate the growth and existence of meromorphic solutions of a type of systems of composite functional equations, and obtain some interesting results. It extends some results concerning ...In this article, we mainly investigate the growth and existence of meromorphic solutions of a type of systems of composite functional equations, and obtain some interesting results. It extends some results concerning functional equations to the systems of functional equations.展开更多
Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk...Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk),where p, q, d are integers greater than 1, in non-Archimedean normed spaces.展开更多
In this article, we establish some uniqueness theorems that improves some results of H. X. Yi for a family of meromorphic functions, and as applications, we give some results about the non-existence of meromorphic sol...In this article, we establish some uniqueness theorems that improves some results of H. X. Yi for a family of meromorphic functions, and as applications, we give some results about the non-existence of meromorphic solutions of Fermat type functional equations.展开更多
In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m ...In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m is a natural number greater than 1,in random normed spaces. 更多还原展开更多
We present results on approximate solutions to the biadditive equationf(x+y,z-w)+f(x-y,z+w)=2f(x,z)-2f(y,w)on a restricted domain. The proof is based on a quite recent fixed point theorem in some function s...We present results on approximate solutions to the biadditive equationf(x+y,z-w)+f(x-y,z+w)=2f(x,z)-2f(y,w)on a restricted domain. The proof is based on a quite recent fixed point theorem in some function spaces. Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it. In this way we obtain inequalities characterizing biadditive mappings and inner product spaces. Our outcomes are connected with the well known issues of Ulam stability and hyperstability.展开更多
In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of t...In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of this notation, we study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, we present the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces, and the theory of functional equations.展开更多
By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get ...By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get is about both components of meromorphic solutions on the system of composite functional equations satisfying Riccati differential equation, the other one is property of meromorphic solutions of the other system of composite functional equations while restricting the growth.展开更多
Through the paper, a general solution of a mixed type functional equation in fuzzy Banach space is obtained and by using the fixed point method a generalized Hyers-Ulam-Rassias stability of the mixed type functional e...Through the paper, a general solution of a mixed type functional equation in fuzzy Banach space is obtained and by using the fixed point method a generalized Hyers-Ulam-Rassias stability of the mixed type functional equation in fuzzy Banach space is proved.展开更多
The author considers the Feigenbaum's functional equation fp(λx) = λf(x) for each p > 2. The existence of nonsingle-valley continuous solutions to this equation is discussed and a feasible method to construct...The author considers the Feigenbaum's functional equation fp(λx) = λf(x) for each p > 2. The existence of nonsingle-valley continuous solutions to this equation is discussed and a feasible method to construct such solutions is given.展开更多
In this paper, some examples, such as iterated functional systems, scaling equation of wavelet transform,and invariant measure system, are used to show that the homoclinic orbit solutions exist in the functional equat...In this paper, some examples, such as iterated functional systems, scaling equation of wavelet transform,and invariant measure system, are used to show that the homoclinic orbit solutions exist in the functional equations too.And the solitary wave exists in generalized dynamical systems and functional systems.展开更多
Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a cont...Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a continuous map, and f|(D m)° is analytic}. For H∈ A(D m,C)(m≥2), f∈A(D,D) and z∈D, write Ψ H(f)(z)=H(z,f(z),...,f m-1(z)). Suppose F,G∈A(D 2n+1,C), and H k,K k∈A(D k,C), k=2,...,n. In this paper, the system of functional equations F(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0 G(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0(z∈D) is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A(D,D) are given.展开更多
In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a m...In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].展开更多
The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of no...The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.展开更多
In this article, the author derives a functional equation η(s)=[(π/4)^s-1/2√2/π Г(1-s)sin(πs/2)]η(1-s) (1) of the analytic function η(s) which is defined by η(s)=1^-s-3^-s-5^-s+7^-s+… (2...In this article, the author derives a functional equation η(s)=[(π/4)^s-1/2√2/π Г(1-s)sin(πs/2)]η(1-s) (1) of the analytic function η(s) which is defined by η(s)=1^-s-3^-s-5^-s+7^-s+… (2) for complex variable s with Re s 〉 1, and is defined by analytic continuation for other values of s. The author proves (1) by Ramanujan identity (see [1], [3]). Her method provides a new derivation of the functional equation of Riemann zeta function by using Poisson summation formula.展开更多
Let f be a continuous anti-unimodal solution of a p-order Frigenbaum's dunctioal equation.A criterion is given to determine whether or not the topological entropy of j is zero.And a continuous anti-unimodal soluti...Let f be a continuous anti-unimodal solution of a p-order Frigenbaum's dunctioal equation.A criterion is given to determine whether or not the topological entropy of j is zero.And a continuous anti-unimodal solution of 4-order equation with positive topological eotrpy is constructed.展开更多
In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome b...In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome by utilization of Hardy-Boedewadt's theorem.展开更多
In this paper, we prove a generalization of Hyers' theorem on the sta- bility of approximately additive mapping and a generalization of Badora's theorem on approximate ring homomorphism. We also obtain more general ...In this paper, we prove a generalization of Hyers' theorem on the sta- bility of approximately additive mapping and a generalization of Badora's theorem on approximate ring homomorphism. We also obtain more general stability theorem, which gives stability theorems on Jordan and Lie homomorphisms. The proofs of the theorems in this paper are given following essentially the Hyers-Rassias approach to the stability of the functional equations connected with Ulam's problem.展开更多
Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f ...Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.展开更多
文摘A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.
文摘This paper is concerned with the oscillation of second order linear functional equations of the form x(g(t)) = p(t)x(t) + Q(t)X(g(2)(t)), Where p, Q, g : [t(0), infinity) --> R+ = [0, infinity) are given real valued functions such that g(t) not equivalent to t, lim(t-->infinity) g(t) = infinity. It is proved here that when 0 less than or equal to m := lim inf(t-->infinity) Q(t)P(g(t)) less than or equal to 1/4 all solutions of this equation oscillate if the condition lim(t-->infinity) sup Q(t)P(g(t)) > (1 + root1 -4m/2)(2) (*) is satisfied. It should be emphasized that the condition (*) can not be improved in some sense.
基金Project supported by NSF of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘In this article, we mainly investigate the growth and existence of meromorphic solutions of a type of systems of composite functional equations, and obtain some interesting results. It extends some results concerning functional equations to the systems of functional equations.
文摘Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk),where p, q, d are integers greater than 1, in non-Archimedean normed spaces.
文摘In this article, we establish some uniqueness theorems that improves some results of H. X. Yi for a family of meromorphic functions, and as applications, we give some results about the non-existence of meromorphic solutions of Fermat type functional equations.
文摘In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m is a natural number greater than 1,in random normed spaces. 更多还原
文摘We present results on approximate solutions to the biadditive equationf(x+y,z-w)+f(x-y,z+w)=2f(x,z)-2f(y,w)on a restricted domain. The proof is based on a quite recent fixed point theorem in some function spaces. Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it. In this way we obtain inequalities characterizing biadditive mappings and inner product spaces. Our outcomes are connected with the well known issues of Ulam stability and hyperstability.
基金supported by the Natural Science Foundation of Yibin University (No. 2009Z003)
文摘In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of this notation, we study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, we present the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces, and the theory of functional equations.
文摘By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get is about both components of meromorphic solutions on the system of composite functional equations satisfying Riccati differential equation, the other one is property of meromorphic solutions of the other system of composite functional equations while restricting the growth.
文摘Through the paper, a general solution of a mixed type functional equation in fuzzy Banach space is obtained and by using the fixed point method a generalized Hyers-Ulam-Rassias stability of the mixed type functional equation in fuzzy Banach space is proved.
文摘The author considers the Feigenbaum's functional equation fp(λx) = λf(x) for each p > 2. The existence of nonsingle-valley continuous solutions to this equation is discussed and a feasible method to construct such solutions is given.
文摘In this paper, some examples, such as iterated functional systems, scaling equation of wavelet transform,and invariant measure system, are used to show that the homoclinic orbit solutions exist in the functional equations too.And the solitary wave exists in generalized dynamical systems and functional systems.
基金Supported by the National Natural Science Foundation of China (1 0 2 2 6 0 1 4) ,Guangxi Science Foun-dation (0 2 2 90 0 1 )
文摘Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a continuous map, and f|(D m)° is analytic}. For H∈ A(D m,C)(m≥2), f∈A(D,D) and z∈D, write Ψ H(f)(z)=H(z,f(z),...,f m-1(z)). Suppose F,G∈A(D 2n+1,C), and H k,K k∈A(D k,C), k=2,...,n. In this paper, the system of functional equations F(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0 G(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0(z∈D) is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A(D,D) are given.
基金This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
文摘In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
基金supported by the Natural Science Foundation of Yibin University(No.2009Z03)
文摘The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.
基金Supported by Separated Budget Research from New Jersey City University
文摘In this article, the author derives a functional equation η(s)=[(π/4)^s-1/2√2/π Г(1-s)sin(πs/2)]η(1-s) (1) of the analytic function η(s) which is defined by η(s)=1^-s-3^-s-5^-s+7^-s+… (2) for complex variable s with Re s 〉 1, and is defined by analytic continuation for other values of s. The author proves (1) by Ramanujan identity (see [1], [3]). Her method provides a new derivation of the functional equation of Riemann zeta function by using Poisson summation formula.
文摘Let f be a continuous anti-unimodal solution of a p-order Frigenbaum's dunctioal equation.A criterion is given to determine whether or not the topological entropy of j is zero.And a continuous anti-unimodal solution of 4-order equation with positive topological eotrpy is constructed.
文摘In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome by utilization of Hardy-Boedewadt's theorem.
文摘In this paper, we prove a generalization of Hyers' theorem on the sta- bility of approximately additive mapping and a generalization of Badora's theorem on approximate ring homomorphism. We also obtain more general stability theorem, which gives stability theorems on Jordan and Lie homomorphisms. The proofs of the theorems in this paper are given following essentially the Hyers-Rassias approach to the stability of the functional equations connected with Ulam's problem.
文摘Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.