期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electrical, Thermal, and Mechanical Properties of Cu/Ti3AlC2 Functional Gradient Materials Prepared by Low-temperature Spark Plasma Sintering 被引量:1
1
作者 陈艳林 PENG Hang +3 位作者 LOU Lang HUANG Kang YAN Ming 吴崇刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期876-882,共7页
Cu/Ti3AlC2 composite and functional-gradient materials with excellent electrical conductivity and thermal conductivity as well as good flexural properties were prepared by low-temperature spark plasma sintering of Cu ... Cu/Ti3AlC2 composite and functional-gradient materials with excellent electrical conductivity and thermal conductivity as well as good flexural properties were prepared by low-temperature spark plasma sintering of Cu and Ti3AlC2 powder mixtures. The phase compositions of the materials were analyzed by X-ray diffraction, and their microstructure was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Further, the electrical conductivity, thermal conductivity, and flexural properties of the materials were tested. Results show that, for the composite materials, the resistivity rises from 0.75 × 10^-7 Ω·m only to 1.32 × 10^-7 Ω·m and the thermal diffusivity reduces from 82.5 mm^2/s simply to 39.8 mm^2/s, while the flexural strength improves from 412.9 MPa to 471.3 MPa, as the content of Ti3AlC2 is increased from 5 wt%to 25 wt%. Additionally, the functional-gradient materials sintered without interface between the layers exhibit good designability, and their overall electrical conductivity, thermal conductivity, and flexural strength are all higher than those of the corresponding uniform composite material. 展开更多
关键词 cu/ti3alc2 functional gradient material ELECTRICAL CONDUCtiVITY THERMAL CONDUCtiVITY
下载PDF
Microstructures and Mechanical,Electrical,High-temperature Properties of Cu/Ti_2AlC FGM Fabricated by Hot-pressing
2
作者 陈艳林 LI Jin +2 位作者 LIU Hao LI Zongyu ZENG Chengwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1250-1254,共5页
The microstructure and the electrical, thermal, friction, and mechanical properties of Cu/Ti_2AlC fabricated by hot-pressing at 900 ℃ for 1 h were investigated in the present work. Microstructural observations have s... The microstructure and the electrical, thermal, friction, and mechanical properties of Cu/Ti_2AlC fabricated by hot-pressing at 900 ℃ for 1 h were investigated in the present work. Microstructural observations have shown that the plate-like Ti_2AlC grains distribute irregularly in the network of Cu grains, and well-structured, crack-free bonds between the layers. With the increase in the content of Ti_2AlC from layer A to layer D, the electrical resistivity increases from 1.381×10^(-7)Ω·m to 1.918 ×10^(-7)Ω·m, the hardness increases from about 980.27 MPa to about 2196.01 MPa, and the friction coefficient from above 0.20 reduces to about 0.15. Oxidation rate increases with the increases of temperature. Exfoliation was obviously observed on the surface of oxidation layer A. The surface of layer D was still intact and the spalling and other defects were not found. The mass decreases in the acid solution, and increases in the alkaline solution. The largest corrosion rate is found in 6.5% HNO_3 or 4% Na OH solution. 展开更多
关键词 functional gradient material cu/ti2alc preparation performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部